These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29435212)

  • 1. Photoelectrochemical device based on Mo-doped BiVO
    Wang L; Han D; Ni S; Ma W; Wang W; Niu L
    Chem Sci; 2015 Nov; 6(11):6632-6638. PubMed ID: 29435212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu
    Ye C; Xu S; Wu Z; Wang M
    Anal Bioanal Chem; 2022 Jun; 414(14):4139-4147. PubMed ID: 35441261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Fluorination and Molybdenum Codoping on Monoclinic BiVO
    Chen X; Wu Y; Deng M; Shen H; Ding J; Wang W
    ACS Omega; 2022 May; 7(20):17075-17082. PubMed ID: 35647421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Erbium (Er) and Yttrium (Y) doping on BiVO
    Moscow S; Kavinkumar V; Sriramkumar M; Jothivenkatachalam K; Saravanan P; Rajamohan N; Vasseghian Y; Rajasimman M
    Chemosphere; 2022 Jul; 299():134343. PubMed ID: 35307389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BiVO
    Zheng L; Wang M; Li Y; Ma F; Li J; Jiang W; Liu M; Cheng H; Wang Z; Zheng Z; Wang P; Liu Y; Dai Y; Huang B
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photocurrent density for photoelectrochemical catalyzing water oxidation using novel W-doped BiVO
    Pai H; Kuo TR; Chung RJ; Kubendhiran S; Yougbaré S; Lin LY
    J Colloid Interface Sci; 2022 Oct; 624():515-526. PubMed ID: 35679639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergy Effect of the Enhanced Local Electric Field and Built-In Electric Field of CoS/Mo-Doped BiVO
    Guan Y; Gu X; Deng Q; Wang S; Li Z; Yan S; Zou Z
    Inorg Chem; 2023 Oct; 62(41):16919-16931. PubMed ID: 37792966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc and Molybdenum Co-Doped BiVO
    Qian Y; Feng J; Xu R; Fan D; Du Y; Ren X; Wei Q; Ju H
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16662-16669. PubMed ID: 32196305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO
    Rohloff M; Anke B; Kasian O; Zhang S; Lerch M; Scheu C; Fischer A
    ACS Appl Mater Interfaces; 2019 May; 11(18):16430-16442. PubMed ID: 31017393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtomolar sensing of Alzheimer's tau proteins by water oxidation-coupled photoelectrochemical platform.
    Kim K; Park CB
    Biosens Bioelectron; 2020 Apr; 154():112075. PubMed ID: 32056970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance photoelectrochemical immunosensing platform based on front-illuminated Mo:BiVO
    Zhang W; Wang T; Jiao B; Wang X; Qu R; Han J
    Talanta; 2024 May; 271():125670. PubMed ID: 38237277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered photoelectrochemical platform for rational global antioxidant capacity evaluation based on ultrasensitive sulfonated graphene-TiO2 nanohybrid.
    Wang L; Ma W; Gan S; Han D; Zhang Q; Niu L
    Anal Chem; 2014 Oct; 86(20):10171-8. PubMed ID: 25226344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterojunction photoanode of SnO
    Kahng S; Kim JH
    Chemosphere; 2022 Mar; 291(Pt 2):132800. PubMed ID: 34748804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deposition of zinc cobaltite nanoparticles onto bismuth vanadate for enhanced photoelectrochemical water splitting.
    Majumder S; Quang ND; Hung NM; Chinh ND; Kim C; Kim D
    J Colloid Interface Sci; 2021 Oct; 599():453-466. PubMed ID: 33962206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface-engineered Z-scheme of BiVO
    Mane P; Bae H; Burungale V; Lee SW; Misra M; Parbat H; Kadam AN; Ha JS
    Chemosphere; 2022 Dec; 308(Pt 1):136166. PubMed ID: 36037961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of M-BiVO
    Baral B; Reddy KH; Parida KM
    J Colloid Interface Sci; 2019 Oct; 554():278-295. PubMed ID: 31302366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport.
    Seabold JA; Zhu K; Neale NR
    Phys Chem Chem Phys; 2014 Jan; 16(3):1121-31. PubMed ID: 24287501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes.
    Park Y; Kang D; Choi KS
    Phys Chem Chem Phys; 2014 Jan; 16(3):1238-46. PubMed ID: 24296682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The optimization of optical modes in Ni-BiVO
    Lei M; Liu J; Huang Y; Dong Y; Zhou S; Zhao H; Wang Z; Wu M; Lei Y; Wang Z
    Nanotechnology; 2019 Nov; 30(44):445403. PubMed ID: 31342934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved photocatalytic and photoelectrochemical performance of monoclinic bismuth vanadate by surface defect states (Bi
    Tayyebi A; Soltani T; Hong H; Lee BK
    J Colloid Interface Sci; 2018 Mar; 514():565-575. PubMed ID: 29291555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.