These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29435445)

  • 1. Detection of Collapse and Crystallization of Saccharide, Protein, and Mannitol Formulations by Optical Fibers in Lyophilization.
    Horn J; Friess W
    Front Chem; 2018; 6():4. PubMed ID: 29435445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization of mannitol below Tg' during freeze-drying in binary and ternary aqueous systems.
    Pyne A; Surana R; Suryanarayanan R
    Pharm Res; 2002 Jun; 19(6):901-8. PubMed ID: 12134964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates.
    Horn J; Schanda J; Friess W
    Eur J Pharm Biopharm; 2018 Jun; 127():342-354. PubMed ID: 29522899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-drying of mannitol-trehalose-sodium chloride-based formulations: the impact of annealing on dry layer resistance to mass transfer and cake structure.
    Lu X; Pikal MJ
    Pharm Dev Technol; 2004; 9(1):85-95. PubMed ID: 15000469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulations of sugars with amino acids or mannitol--influence of concentration ratio on the properties of the freeze-concentrate and the lyophilizate.
    Lueckel B; Bodmer D; Helk B; Leuenberger H
    Pharm Dev Technol; 1998 Aug; 3(3):325-36. PubMed ID: 9742553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.
    Korang-Yeboah M; Srinivasan C; Siddiqui A; Awotwe-Otoo D; Cruz CN; Muhammad A
    AAPS PharmSciTech; 2018 Jan; 19(1):448-459. PubMed ID: 28785859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the sucrose/glycine/water system by differential scanning calorimetry and freeze-drying microscopy.
    Kasraian K; Spitznagel TM; Juneau JA; Yim K
    Pharm Dev Technol; 1998 May; 3(2):233-9. PubMed ID: 9653761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation and evaluation of an optical fiber system as novel process monitoring tool during lyophilization.
    Kasper JC; Wiggenhorn M; Resch M; Friess W
    Eur J Pharm Biopharm; 2013 Apr; 83(3):449-59. PubMed ID: 23159708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of crystallizing and non-crystallizing cosolutes on trehalose crystallization during freeze-drying.
    Sundaramurthi P; Suryanarayanan R
    Pharm Res; 2010 Nov; 27(11):2384-93. PubMed ID: 20824310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallizing amino acids as bulking agents in freeze-drying.
    Horn J; Tolardo E; Fissore D; Friess W
    Eur J Pharm Biopharm; 2018 Nov; 132():70-82. PubMed ID: 30201570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of freezing procedure and annealing on the physico-chemical properties and the formation of mannitol hydrate in mannitol-sucrose-NaCl formulations.
    Hawe A; Friess W
    Eur J Pharm Biopharm; 2006 Nov; 64(3):316-25. PubMed ID: 16875806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing lyophilization primary drying: A vaccine case study with experimental and modeling techniques.
    Najarian J; Metsi-Guckel E; Renawala HK; Grosse D; Sims A; Walter A; Sarkar A; Karande A
    Int J Pharm; 2024 Jun; 659():124168. PubMed ID: 38663644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical characterization of the freezing behavior of mannitol-human serum albumin formulations.
    Hawe A; Friess W
    AAPS PharmSciTech; 2006; 7(4):94. PubMed ID: 17285745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of subambient differential scanning calorimetry to monitor the frozen-state behavior of blends of excipients for freeze-drying.
    Martini A; Kume S; Crivellente M; Artico R
    PDA J Pharm Sci Technol; 1997; 51(2):62-7. PubMed ID: 9146035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of freeze/thaw-related quality attributes of a liquid biopharmaceutical formulation: the role of saccharide excipients.
    Zhou R; Schlam RF; Yin S; Gandhi RB; Adams ML
    PDA J Pharm Sci Technol; 2012; 66(3):221-35. PubMed ID: 22634588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Through-vial impedance spectroscopy of critical events during the freezing stage of the lyophilization cycle: the example of the impact of sucrose on the crystallization of mannitol.
    Arshad MS; Smith G; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2014 Aug; 87(3):598-605. PubMed ID: 24825125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual Influence of Mannitol and Trehalose on Crystallization Behavior in Frozen Solutions.
    Jena S; Suryanarayanan R; Aksan A
    Pharm Res; 2016 Jun; 33(6):1413-25. PubMed ID: 26908047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-Drying Above the Glass Transition Temperature in Amorphous Protein Formulations While Maintaining Product Quality and Improving Process Efficiency.
    Depaz RA; Pansare S; Patel SM
    J Pharm Sci; 2016 Jan; 105(1):40-9. PubMed ID: 26580140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying.
    Shalaev EY; Johnson-Elton TD; Chang L; Pikal MJ
    Pharm Res; 2002 Feb; 19(2):195-201. PubMed ID: 11883647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.