These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2943549)

  • 21. Skeletal muscle histochemical and biochemical characteristics in sedentary male and female subjects.
    Simoneau JA; Lortie G; Boulay MR; Thibault MC; Thériault G; Bouchard C
    Can J Physiol Pharmacol; 1985 Jan; 63(1):30-5. PubMed ID: 3986689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How to calculate human muscle fibre areas in biopsy samples--methodological considerations.
    Blomstrand E; Celsing F; Fridén J; Ekblom B
    Acta Physiol Scand; 1984 Dec; 122(4):545-51. PubMed ID: 6084399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzyme-histochemical differences in fibre-type between the human major and minor zygomatic and the first dorsal interosseus muscles.
    Stål P; Eriksson PO; Eriksson A; Thornell LE
    Arch Oral Biol; 1987; 32(11):833-41. PubMed ID: 2966621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal muscle fibre characteristics in young women.
    Nygaard E
    Acta Physiol Scand; 1981 Jul; 112(3):299-304. PubMed ID: 6457505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Skeletal muscle fibre types, enzyme activities and physical performance in young males and females.
    Komi PV; Karlsson J
    Acta Physiol Scand; 1978 Jun; 103(2):210-8. PubMed ID: 150196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis.
    Lexell J; Henriksson-Larsén K; Sjöström M
    Acta Physiol Scand; 1983 Jan; 117(1):115-22. PubMed ID: 6858699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal muscle fibres and muscle enzyme activities in monozygous and dizygous twins of both sexes.
    Komi PV; Viitasalo JH; Havu M; Thorstensson A; Sjödin B; Karlsson J
    Acta Physiol Scand; 1977 Aug; 100(4):385-92. PubMed ID: 199045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activities of hexokinase, phosphofructokinase, fructose bisphosphatase and 2-oxoglutarate dehydrogenase in muscle of normal subjects and very ill surgical patients.
    King RF; Macfie J; Hill G
    Clin Sci (Lond); 1981 Apr; 60(4):451-6. PubMed ID: 6265137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development.
    Borges O; Essén-Gustavsson B
    Acta Physiol Scand; 1989 May; 136(1):29-36. PubMed ID: 2773660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity patterns of phosphofructokinase, glyceraldehydephosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase in microdissected fast and slow fibres from rabbit psoas and soleus muscle.
    Spamer C; Pette D
    Histochemistry; 1977 Jun; 52(3):201-16. PubMed ID: 142072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle fibre characteristics of active and inactive standardbred horses.
    Essén-Gustavsson B; Lindholm A
    Equine Vet J; 1985 Nov; 17(6):434-8. PubMed ID: 4076157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of different fibre types in human skeletal muscles. A statistical and computational study of the fibre type arrangement in m. vastus lateralis of young, healthy males.
    Lexell J; Downham D; Sjöström M
    J Neurol Sci; 1984 Sep; 65(3):353-65. PubMed ID: 6548511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High altitude tissue adaptation in Andean coots: capillarity, fibre area, fibre type and enzymatic activities of skeletal muscle.
    León-Velarde F; Sanchez J; Bigard AX; Brunet A; Lesty C; Monge C
    J Comp Physiol B; 1993; 163(1):52-8. PubMed ID: 8459054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Postnatal muscle fibre histochemistry in the rat.
    Ho KW; Heusner WW; Van Huss J; Van Huss WD
    J Embryol Exp Morphol; 1983 Aug; 76():37-49. PubMed ID: 6226760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skeletal muscle characteristics predict body fat gain in response to overfeeding in never-obese young men.
    Sun G; Ukkola O; Rankinen T; Joanisse DR; Bouchard C
    Metabolism; 2002 Apr; 51(4):451-6. PubMed ID: 11912552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Work capacity and metabolic and morphologic characteristics of the human quadriceps muscle in response to unloading.
    Berg HE; Dudley GA; Hather B; Tesch PA
    Clin Physiol; 1993 Jul; 13(4):337-47. PubMed ID: 8370234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variability in muscle fibre areas in whole human quadriceps muscle. How much and why?
    Lexell J; Taylor CC
    Acta Physiol Scand; 1989 Aug; 136(4):561-8. PubMed ID: 2528889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle characteristics in Thoroughbreds of different ages and sexes.
    Ronéus M; Lindholm A; Asheim A
    Equine Vet J; 1991 May; 23(3):207-10. PubMed ID: 1884703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle- and fibre type-specific expression of glucose transporter 4, glycogen synthase and glycogen phosphorylase proteins in human skeletal muscle.
    Daugaard JR; Richter EA
    Pflugers Arch; 2004 Jan; 447(4):452-6. PubMed ID: 14634820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between myonuclear domain size and fibre properties in the muscles of Thoroughbred horses.
    Kawai M; Kuwano A; Hiraga A; Miyata H
    Equine Vet J Suppl; 2010 Nov; (38):311-6. PubMed ID: 21059023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.