BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 29435669)

  • 1. Assessment of Simple Models for Molecular Simulation of Ethylene Carbonate and Propylene Carbonate as Solvents for Electrolyte Solutions.
    Chaudhari MI; Muralidharan A; Pratt LR; Rempe SB
    Top Curr Chem (Cham); 2018 Feb; 376(2):7. PubMed ID: 29435669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models of Ion Solvation Thermodynamics in Ethylene Carbonate and Propylene Carbonate.
    Arslanargin A; Powers A; Beck TL; Rick SW
    J Phys Chem B; 2016 Mar; 120(8):1497-508. PubMed ID: 26292974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion.
    Chaudhari MI; Nair JR; Pratt LR; Soto FA; Balbuena PB; Rempe SB
    J Chem Theory Comput; 2016 Dec; 12(12):5709-5718. PubMed ID: 27767309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations.
    Tasaki K
    J Phys Chem B; 2005 Feb; 109(7):2920-33. PubMed ID: 16851305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Polarizable Force Field for Molecular Dynamics Simulations of Lithium-Ion Battery Electrolytes: Sulfone-Based Solvents and Lithium Salts.
    Starovoytov ON
    J Phys Chem B; 2021 Oct; 125(40):11242-11255. PubMed ID: 34586817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics of Lithium Ion Transport in a Model Solid Electrolyte Interphase.
    Muralidharan A; Chaudhari MI; Pratt LR; Rempe SB
    Sci Rep; 2018 Jul; 8(1):10736. PubMed ID: 30013026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics.
    Ganesh P; Jiang DE; Kent PR
    J Phys Chem B; 2011 Mar; 115(12):3085-90. PubMed ID: 21384941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-Solvent Interaction Mediated Lithium-Ion (De)intercalation Chemistry in Propylene Carbonate Based Electrolytes for Lithium-Sulfur Batteries.
    Liang H; Ma Z; Wang Y; Zhao F; Cao Z; Cavallo L; Li Q; Ming J
    ACS Nano; 2023 Sep; 17(18):18062-18073. PubMed ID: 37703060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the Role of Li
    He J; Wang H; Zhou Q; Qi S; Wu M; Li F; Hu W; Ma J
    Small Methods; 2021 Aug; 5(8):e2100441. PubMed ID: 34927858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering the Ethylene Carbonate-Propylene Carbonate Mystery in Li-Ion Batteries.
    Xing L; Zheng X; Schroeder M; Alvarado J; von Wald Cresce A; Xu K; Li Q; Li W
    Acc Chem Res; 2018 Feb; 51(2):282-289. PubMed ID: 29381050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric Relaxation of Ethylene Carbonate and Propylene Carbonate from Molecular Dynamics Simulations.
    You X; Chaudhari MI; Rempe SB; Pratt LR
    J Phys Chem B; 2016 Mar; 120(8):1849-53. PubMed ID: 26599721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared (attenuated total reflection) study of propylene carbonate solutions containing lithium and sodium perchlorate.
    Brooksby PA; Fawcett WR
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 May; 64(2):372-82. PubMed ID: 16384731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6.
    Borodin O; Smith GD
    J Phys Chem B; 2009 Feb; 113(6):1763-76. PubMed ID: 19146427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of salt concentration on properties of mixed carbonate-based electrolyte for Li-ion batteries: a molecular dynamics simulation study.
    Haghkhah H; Ghalami Choobar B; Amjad-Iranagh S
    J Mol Model; 2020 Aug; 26(8):220. PubMed ID: 32740770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic thermodynamics and microkinetics of the reduction mechanism of electrolyte additives to facilitate the formation of solid electrolyte interphases in lithium-ion batteries.
    Liu X; Zhou J; Xu Z; Wang Y
    RSC Adv; 2020 Apr; 10(28):16302-16312. PubMed ID: 35498873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Li(+)-molecule interactions of lithium tetrafluoroborate in propylene carbonate + N,N-dimethylformamide mixtures: an FTIR spectroscopic study.
    Zhang B; Zhou Y; Li X; Wang J; Li G; Yun Q; Wang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():40-5. PubMed ID: 24463238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of cis- versus trans-Configuration of Butylene Carbonate Electrolyte on Microscopic Solid Electrolyte Interphase Formation Processes in Lithium-Ion Batteries.
    Miyazaki K; Takenaka N; Fujie T; Watanabe E; Yamada Y; Yamada A; Nagaoka M
    ACS Appl Mater Interfaces; 2019 May; 11(17):15623-15629. PubMed ID: 30945849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-molecule interactions in solutions of lithium perchlorate in propylene carbonate + diethyl carbonate mixtures: an IR and molecular orbital study.
    Wang J; Wu Y; Xuan X; Wang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Aug; 58(10):2097-104. PubMed ID: 12212734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FTIR spectroscopic studies of lithium tetrafluoroborate in propylene carbonate+diethyl carbonate mixtures.
    Zhang B; Zhou Y; Li X; Ren X; Nian H; Shen Y; Yun Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():59-64. PubMed ID: 24295777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.