These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29435674)

  • 1. A novel automatic flow method with direct-injection photometric detector for determination of dissolved reactive phosphorus in wastewater and freshwater samples.
    Koronkiewicz S; Trifescu M; Smoczynski L; Ratnaweera H; Kalinowski S
    Environ Monit Assess; 2018 Feb; 190(3):133. PubMed ID: 29435674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photometric determination of phosphorus in mineralized biodiesel using a micro-flow-batch analyzer with solenoid micro-pumps.
    Lima MB; Barreto IS; Andrade SI; Neta MS; Almeida LF; Araújo MC
    Talanta; 2012 Aug; 98():118-22. PubMed ID: 22939136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode.
    Liu R; Ishimatsu R; Yahiro M; Adachi C; Nakano K; Imato T
    Talanta; 2015 Jan; 132():96-105. PubMed ID: 25476284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photometric Determination of Iron in Pharmaceutical Formulations Using Double-Beam Direct Injection Flow Detector.
    Koronkiewicz S
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loop flow analysis of dissolved reactive phosphorus in aqueous samples.
    Ma J; Li Q; Yuan D
    Talanta; 2014 Jun; 123():218-23. PubMed ID: 24725885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of on-line UV photoreduction in the flow analysis determination of dissolved reactive phosphate in natural waters.
    Nagul EA; McKelvie ID; Kolev SD
    Talanta; 2015 Feb; 133():155-61. PubMed ID: 25435242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of direct-injection detector integrated with the multi-pumping flow system to photometric stop-flow determination of total iron.
    Koronkiewicz S; Kalinowski S
    Talanta; 2012 Jul; 96():68-74. PubMed ID: 22817930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence detection for phosphate monitoring using reverse injection analysis.
    Kröckel L; Lehmann H; Wieduwilt T; Schmidt MA
    Talanta; 2014 Jul; 125():107-13. PubMed ID: 24840422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-pumping flow system for the determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples.
    Pons C; Tóth IV; Rangel AO; Forteza R; Cerdà V
    Anal Chim Acta; 2006 Jul; 572(1):148-54. PubMed ID: 17723472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a flow method for the determination of phosphate in estuarine and freshwaters--comparison of flow cells in spectrophotometric sequential injection analysis.
    Mesquita RB; Ferreira MT; Tóth IV; Bordalo AA; McKelvie ID; Rangel AO
    Anal Chim Acta; 2011 Sep; 701(1):15-22. PubMed ID: 21763803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel direct-injection photometric detector integrated with solenoid pulse-pump flow system.
    Koronkiewicz S; Kalinowski S
    Talanta; 2011 Oct; 86():436-41. PubMed ID: 22063563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automatic chemiluminescence method based on the multi-pumping flow system coupled with the fluidized reactor and direct-injection detector: Determination of uric acid in saliva samples.
    Vakh C; Koronkiewicz S; Kalinowski S; Moskvin L; Bulatov A
    Talanta; 2017 May; 167():725-732. PubMed ID: 28340785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow injection analysis as a tool for enhancing oceanographic nutrient measurements--a review.
    Worsfold PJ; Clough R; Lohan MC; Monbet P; Ellis PS; Quétel CR; Floor GH; McKelvie ID
    Anal Chim Acta; 2013 Nov; 803():15-40. PubMed ID: 24216194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A very sensitive flow-injection spectrophotometric determination method for iron (II) and total iron using 2', 3, 4', 5, 7-pentahydroxyflavone.
    Asan A; Aydin R; Semiz DK; Erci V; Isildak I
    Environ Monit Assess; 2013 Mar; 185(3):2115-21. PubMed ID: 22628104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bimodal optoelectronic flow-through detector for phosphate determination.
    Fiedoruk M; Mieczkowska E; Koncki R; Tymecki L
    Talanta; 2014 Oct; 128():211-4. PubMed ID: 25059150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous flow method for the simultaneous determination of phosphate/arsenate based on their different kinetic characteristics.
    Borgnino L; Pfaffen V; Depetris PJ; Palomeque M
    Talanta; 2011 Sep; 85(3):1310-6. PubMed ID: 21807188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid flow system integrating a miniaturized optoelectronic detector for on-line dynamic fractionation and fluorometric determination of bioaccessible orthophosphate in soils.
    Fiedoruk M; Cocovi-Solberg DJ; Tymecki Ł; Koncki R; Miró M
    Talanta; 2015 Feb; 133():59-65. PubMed ID: 25435227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthophosphate, phytate, and total phosphorus determination in cereals by flow injection analysis.
    Vieira EC; Nogueira AR
    J Agric Food Chem; 2004 Apr; 52(7):1800-3. PubMed ID: 15053512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of an ultrafiltration technique for measurement of orthophosphate in shallow wetlands.
    Zhang A; Oldham C
    Sci Total Environ; 2001 Feb; 266(1-3):159-67. PubMed ID: 11258813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of glyphosate in water samples by multi-pumping flow system coupled to a liquid waveguide capillary cell.
    Silva AS; Tóth IV; Pezza L; Pezza HR; Lima JL
    Anal Sci; 2011; 27(10):1031-6. PubMed ID: 21985928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.