These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 29436065)
1. Breaking the Current-Retention Dilemma in Cation-Based Resistive Switching Devices Utilizing Graphene with Controlled Defects. Zhao X; Ma J; Xiao X; Liu Q; Shao L; Chen D; Liu S; Niu J; Zhang X; Wang Y; Cao R; Wang W; Di Z; Lv H; Long S; Liu M Adv Mater; 2018 Apr; 30(14):e1705193. PubMed ID: 29436065 [TBL] [Abstract][Full Text] [Related]
2. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer. Zhao X; Liu S; Niu J; Liao L; Liu Q; Xiao X; Lv H; Long S; Banerjee W; Li W; Si S; Liu M Small; 2017 Sep; 13(35):. PubMed ID: 28234422 [TBL] [Abstract][Full Text] [Related]
3. Modulating the filament rupture degree of threshold switching device for self-selective and low-current nonvolatile memory application. Zhao X; Niu J; Yang Y; Xiao X; Chen R; Wu Z; Zhang Y; Lv H; Long S; Liu Q; Jiang C; Liu M Nanotechnology; 2020 Apr; 31(14):144002. PubMed ID: 31860888 [TBL] [Abstract][Full Text] [Related]
4. Transformation of threshold volatile switching to quantum point contact originated nonvolatile switching in graphene interface controlled memory devices. Wu Z; Zhao X; Yang Y; Wang W; Zhang X; Wang R; Cao R; Liu Q; Banerjee W Nanoscale Adv; 2019 Sep; 1(9):3753-3760. PubMed ID: 36133528 [TBL] [Abstract][Full Text] [Related]
5. Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory. Celano U; Goux L; Degraeve R; Fantini A; Richard O; Bender H; Jurczak M; Vandervorst W Nano Lett; 2015 Dec; 15(12):7970-5. PubMed ID: 26523952 [TBL] [Abstract][Full Text] [Related]
6. Self-Compliant Threshold Switching Devices with High On/Off ratio by Control of Quantized Conductance in Ag Filaments. Song M; Lee S; Nibhanupudi SST; Singh JV; Disiena M; Luth CJ; Wu S; Coupin MJ; Warner JH; Banerjee SK Nano Lett; 2023 Apr; 23(7):2952-2957. PubMed ID: 36996390 [TBL] [Abstract][Full Text] [Related]
7. Tuneable quantised conductance memory states in TiO Sahu VK; Das AK; Ajimsha RS; Singh R; Misra P Nanotechnology; 2024 May; 35(29):. PubMed ID: 38636460 [TBL] [Abstract][Full Text] [Related]
8. Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Jana D; Roy S; Panja R; Dutta M; Rahaman SZ; Mahapatra R; Maikap S Nanoscale Res Lett; 2015; 10():188. PubMed ID: 25977660 [TBL] [Abstract][Full Text] [Related]
9. Cluster-Type Filaments Induced by Doping in Low-Operation-Current Conductive Bridge Random Access Memory. Sun Y; Song C; Yin S; Qiao L; Wan Q; Liu J; Wang R; Zeng F; Pan F ACS Appl Mater Interfaces; 2020 Jul; 12(26):29481-29486. PubMed ID: 32490665 [TBL] [Abstract][Full Text] [Related]
10. Exploring Nanoscale Electrical Properties of CuO-Graphene Based Hybrid Interfaced Memory Device by Conductive Atomic Force Microscopy. Singh B; Mehta BR; Varandani D; Savu AV; Brugger J J Nanosci Nanotechnol; 2016 Apr; 16(4):4044-51. PubMed ID: 27451764 [TBL] [Abstract][Full Text] [Related]
11. Forming-Free One-Selector/One-Resistor Characteristics of Oxygen-Rich ITO Based Transparent Resistive Switching Memory via Defect Engineering Using the Reactive Sputtering Process. Yun MJ; Kim KH; Kim S; Kim HD J Nanosci Nanotechnol; 2018 Sep; 18(9):5947-5952. PubMed ID: 29677722 [TBL] [Abstract][Full Text] [Related]
12. Air-Stable Lead-Free Perovskite Thin Film Based on CsBi Xiong Z; Hu W; She Y; Lin Q; Hu L; Tang X; Sun K ACS Appl Mater Interfaces; 2019 Aug; 11(33):30037-30044. PubMed ID: 31342747 [TBL] [Abstract][Full Text] [Related]
13. Lead-Free All-Inorganic Cesium Tin Iodide Perovskite for Filamentary and Interface-Type Resistive Switching toward Environment-Friendly and Temperature-Tolerant Nonvolatile Memories. Han JS; Le QV; Choi J; Kim H; Kim SG; Hong K; Moon CW; Kim TL; Kim SY; Jang HW ACS Appl Mater Interfaces; 2019 Feb; 11(8):8155-8163. PubMed ID: 30698005 [TBL] [Abstract][Full Text] [Related]
14. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode. Kim JH; Nam KH; Hwang I; Cho WJ; Park B; Chung HB J Nanosci Nanotechnol; 2014 Dec; 14(12):9498-503. PubMed ID: 25971090 [TBL] [Abstract][Full Text] [Related]
15. High-performance flexible resistive random access memory devices based on graphene oxidized with a perpendicular oxidation gradient. Aziz T; Wei S; Sun Y; Ma LP; Pei S; Dong S; Ren W; Liu Q; Cheng HM; Sun DM Nanoscale; 2021 Feb; 13(4):2448-2455. PubMed ID: 33464264 [TBL] [Abstract][Full Text] [Related]
16. Resistive Switching Performance Improvement via Modulating Nanoscale Conductive Filament, Involving the Application of Two-Dimensional Layered Materials. Li Y; Long S; Liu Q; Lv H; Liu M Small; 2017 Sep; 13(35):. PubMed ID: 28417548 [TBL] [Abstract][Full Text] [Related]
17. In Situ Resistive Switching Effect Scrutinization on Co-Designed Graphene Sensor. Xiong F; Wang Z; Bøjesen ED; Xiong X; Zhu Z; Dong M Small; 2021 Feb; 17(8):e2007053. PubMed ID: 33522141 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene. Lee K; Hwang I; Lee S; Oh S; Lee D; Kim CK; Nam Y; Hong S; Yoon C; Morgan RB; Kim H; Seo S; Seo DH; Lee S; Park BH Sci Rep; 2015 Jul; 5():11279. PubMed ID: 26161992 [TBL] [Abstract][Full Text] [Related]
19. Resistive Switching Memory Devices Based on Body Fluid of Wang L; Wen D Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426438 [TBL] [Abstract][Full Text] [Related]
20. Graphene-Edge Electrode on a Cu-Based Chalcogenide Selector for 3D Vertical Memristor Cells. Seo S; Lim J; Lee S; Alimkhanuly B; Kadyrov A; Jeon D; Lee S ACS Appl Mater Interfaces; 2019 Nov; 11(46):43466-43472. PubMed ID: 31658414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]