These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29436087)

  • 1. Training using a new multidirectional reach tool improves balance in individuals with stroke.
    Khumsapsiri N; Siriphorn A; Pooranawatthanakul K; Oungphalachai T
    Physiother Res Int; 2018 Apr; 23(2):e1704. PubMed ID: 29436087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Randomized comparison trial of balance training by using exergaming and conventional weight-shift therapy in patients with chronic stroke.
    Hung JW; Chou CX; Hsieh YW; Wu WC; Yu MY; Chen PC; Chang HF; Ding SE
    Arch Phys Med Rehabil; 2014 Sep; 95(9):1629-37. PubMed ID: 24862764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Randomized comparison trial of gait training with and without compelled weight-shift therapy in individuals with chronic stroke.
    Sheikh M; Azarpazhooh MR; Hosseini HA
    Clin Rehabil; 2016 Nov; 30(11):1088-1096. PubMed ID: 26545392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive effects of weight-shifting controlled exergames in patients with chronic stroke: a pilot randomized comparison trial.
    Hung JW; Chou CX; Chang HF; Wu WC; Hsieh YW; Chen PC; Yu MY; Chang CC; Lin JR
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):694-702. PubMed ID: 28382812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-stroke balance training: role of force platform with visual feedback technique.
    Srivastava A; Taly AB; Gupta A; Kumar S; Murali T
    J Neurol Sci; 2009 Dec; 287(1-2):89-93. PubMed ID: 19733860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body weight-supported treadmill training is no better than overground training for individuals with chronic stroke: a randomized controlled trial.
    Middleton A; Merlo-Rains A; Peters DM; Greene JV; Blanck EL; Moran R; Fritz SL
    Top Stroke Rehabil; 2014; 21(6):462-76. PubMed ID: 25467394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postural control of individuals with chronic stroke compared to healthy participants: Timed-Up-and-Go, Functional Reach Test and center of pressure movement.
    Portnoy S; Reif S; Mendelboim T; Rand D
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):685-693. PubMed ID: 28178773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of visual feedback in retraining balance following acute stroke.
    Walker C; Brouwer BJ; Culham EG
    Phys Ther; 2000 Sep; 80(9):886-95. PubMed ID: 10960936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of modified sit-to-stand training on balance control in hemiplegic stroke patients: a randomized controlled trial.
    Liu M; Chen J; Fan W; Mu J; Zhang J; Wang L; Zhuang J; Ni C
    Clin Rehabil; 2016 Jul; 30(7):627-36. PubMed ID: 26316551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphone-Based Visual Feedback Trunk Control Training Using a Gyroscope and Mirroring Technology for Stroke Patients: Single-blinded, Randomized Clinical Trial of Efficacy and Feasibility.
    Shin DC; Song CH
    Am J Phys Med Rehabil; 2016 May; 95(5):319-29. PubMed ID: 26829087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does perturbation-based balance training prevent falls among individuals with chronic stroke? A randomised controlled trial.
    Mansfield A; Aqui A; Danells CJ; Knorr S; Centen A; DePaul VG; Schinkel-Ivy A; Brooks D; Inness EL; Mochizuki G
    BMJ Open; 2018 Aug; 8(8):e021510. PubMed ID: 30121600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haptic-based perception-empathy biofeedback system for balance rehabilitation in patients with chronic stroke: Concepts and initial feasibility study.
    Yasuda K; Saichi K; Kaibuki N; Harashima H; Iwata H
    Gait Posture; 2018 May; 62():484-489. PubMed ID: 29677663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Best Core Stabilization for Anticipatory Postural Adjustment and Falls in Hemiparetic Stroke.
    Lee NG; You JSH; Yi CH; Jeon HS; Choi BS; Lee DR; Park JM; Lee TH; Ryu IT; Yoon HS
    Arch Phys Med Rehabil; 2018 Nov; 99(11):2168-2174. PubMed ID: 29476713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrotherapy vs. conventional land-based exercise for improving walking and balance after stroke: a randomized controlled trial.
    Zhu Z; Cui L; Yin M; Yu Y; Zhou X; Wang H; Yan H
    Clin Rehabil; 2016 Jun; 30(6):587-93. PubMed ID: 26130657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effects on dynamic balance and aerobic capacity between objective and subjective methods of high-intensity robot-assisted gait training in chronic stroke patients: a randomized controlled trial.
    Bae YH; Lee SM; Ko M
    Top Stroke Rehabil; 2017 May; 24(4):309-313. PubMed ID: 28102113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of constraint-induced movement therapy for lower limbs on measurements of functional mobility and postural balance in subjects with stroke: a randomized controlled trial.
    E Silva EMGS; Ribeiro TS; da Silva TCC; Costa MFP; Cavalcanti FADC; Lindquist ARR
    Top Stroke Rehabil; 2017 Dec; 24(8):555-561. PubMed ID: 28859603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task- and Context-Specific Balance Training Program Enhances Dynamic Balance and Functional Performance in Parkinsonian Nonfallers: A Randomized Controlled Trial With Six-Month Follow-Up.
    Wong-Yu IS; Mak MK
    Arch Phys Med Rehabil; 2015 Dec; 96(12):2103-11. PubMed ID: 26299751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial.
    Lloréns R; Noé E; Colomer C; Alcañiz M
    Arch Phys Med Rehabil; 2015 Mar; 96(3):418-425.e2. PubMed ID: 25448245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Game-Based Constraint-Induced Movement Therapy on Balance in Patients with Stroke: A Single-Blind Randomized Controlled Trial.
    Choi HS; Shin WS; Bang DH; Choi SJ
    Am J Phys Med Rehabil; 2017 Mar; 96(3):184-190. PubMed ID: 27386814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of visual feedback training and visual targets on muscle activation, balancing, and walking ability in adults after hemiplegic stroke: a preliminary, randomized, controlled study.
    Pak NW; Lee JH
    Int J Rehabil Res; 2020 Mar; 43(1):76-81. PubMed ID: 31633580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.