BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29436239)

  • 1. The mRNA export factor Sac3 maintains nuclear homeostasis and regulates cytoskeleton organization in Candida albicans.
    Xiao C; Yu Q; Zhang B; Li J; Zhang D; Li M
    Future Microbiol; 2018 Mar; 13():283-296. PubMed ID: 29436239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the mRNA export factor Sus1 in oxidative stress tolerance in Candida albicans.
    Xiao C; Yu Q; Zhang B; Li J; Zhang D; Li M
    Biochem Biophys Res Commun; 2018 Feb; 496(2):253-259. PubMed ID: 29326041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex.
    Lei EP; Stern CA; Fahrenkrog B; Krebber H; Moy TI; Aebi U; Silver PA
    Mol Biol Cell; 2003 Mar; 14(3):836-47. PubMed ID: 12631707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans.
    Zhang B; Yu Q; Jia C; Wang Y; Xiao C; Dong Y; Xu N; Wang L; Li M
    Fungal Genet Biol; 2015 Aug; 81():261-70. PubMed ID: 25575432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Candida albicans fimbrin Sac6 regulates oxidative stress response (OSR) and morphogenesis at the transcriptional level.
    Zhang B; Yu Q; Wang Y; Xiao C; Li J; Huo D; Zhang D; Jia C; Li M
    Biochim Biophys Acta; 2016 Sep; 1863(9):2255-66. PubMed ID: 27275845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of VMA5 to vacuolar function, stress response, ion homeostasis and autophagy in Candida albicans.
    Zhang K; Jia C; Yu Q; Xiao C; Dong Y; Zhang M; Zhang D; Zhao Q; Zhang B; Li M
    Future Microbiol; 2017 Oct; 12():1147-1166. PubMed ID: 28879785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunction of the ER P-Type Calcium Pump Spf1 During Hyphal Development in Candida albicans.
    Yu Q; Ma T; Ma C; Zhang B; Li M
    Mycopathologia; 2019 Oct; 184(5):573-583. PubMed ID: 31473908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans.
    McBride AE
    Curr Genet; 2017 Dec; 63(6):989-995. PubMed ID: 28512683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The NDR Kinase Cbk1 Downregulates the Transcriptional Repressor Nrg1 through the mRNA-Binding Protein Ssd1 in Candida albicans.
    Lee HJ; Kim JM; Kang WK; Yang H; Kim JY
    Eukaryot Cell; 2015 Jul; 14(7):671-83. PubMed ID: 26002720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions.
    Jung JH; Kim J
    Fungal Genet Biol; 2011 Dec; 48(12):1116-23. PubMed ID: 22056521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis.
    Finley KR; Berman J
    Eukaryot Cell; 2005 Oct; 4(10):1697-711. PubMed ID: 16215177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.
    Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ
    Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Csr1/Zap1 Maintains Zinc Homeostasis and Influences Virulence in Candida dubliniensis but Is Not Coupled to Morphogenesis.
    Böttcher B; Palige K; Jacobsen ID; Hube B; Brunke S
    Eukaryot Cell; 2015 Jul; 14(7):661-70. PubMed ID: 26002718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of Candida albicans Sfl1 in hyphal development.
    Li Y; Su C; Mao X; Cao F; Chen J
    Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans.
    Li CR; Wang YM; De Zheng X; Liang HY; Tang JC; Wang Y
    J Cell Sci; 2005 Jun; 118(Pt 12):2637-48. PubMed ID: 15914538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans.
    Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans.
    Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M
    Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans.
    Guan G; Wang H; Liang W; Cao C; Tao L; Naseem S; Konopka JB; Wang Y; Huang G
    Fungal Genet Biol; 2015 Aug; 81():150-9. PubMed ID: 25626172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mgm1 is required for maintenance of mitochondrial function and virulence in Candida albicans.
    Liang C; Zhang B; Cui L; Li J; Yu Q; Li M
    Fungal Genet Biol; 2018 Nov; 120():42-52. PubMed ID: 30240789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.