BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29436277)

  • 1. Initial Load Stability of Different Trachea Suture Techniques: Tests on an Ex Vivo Model.
    Kirschbaum A; Abing H; Mirow N
    Otolaryngol Head Neck Surg; 2018 Jun; 158(6):1079-1083. PubMed ID: 29436277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial Resistance of Carina Anastomoses with Increasing Tensile Stress: An ex vivo Model Comparing Different Suture Techniques.
    Kirschbaum A; Hemmerling S; Steinfeldt T; Bartsch DK; Mirow N
    Eur Surg Res; 2017; 58(1-2):20-26. PubMed ID: 27577554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Despite the Effects of Tension and Intraluminal Pressure, Which Suture Technique Is the Most Appropriate for Prevention of Air Leakage or Anastomotic Dehiscence in Tracheal Anastomoses in the Short Term? An Experimental Research on Ex Vivo Model.
    Ersöz H
    Ann Thorac Cardiovasc Surg; 2019 Oct; 25(5):231-236. PubMed ID: 31189774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of interrupted and continuous sutures for tracheal anastomoses in sheep.
    Behrend M; Kluge E; Schüttler W; Klempnauer J
    Eur J Surg; 2002; 168(2):101-6. PubMed ID: 12113266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical stability under load of tracheal anastomoses after various phases in vivo.
    Behrend M; Kluge E; Schüttler W; Klempnauer J
    Laryngoscope; 2002 Feb; 112(2):364-9. PubMed ID: 11889398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New technology applications: Knotless barbed suture for tracheal resection anastomosis.
    Bush CM; Prosser JD; Morrison MP; Sandhu G; Wenger KH; Pashley DH; Birchall MA; Postma GN; Weinberger PM
    Laryngoscope; 2012 May; 122(5):1062-6. PubMed ID: 22473356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of tracheal anastomoses in lambs. Comparison of PDS and Vicryl suture material and interrupted and continuous techniques.
    Friedman E; Perez-Atayde AR; Silvera M; Jonas RA
    J Thorac Cardiovasc Surg; 1990 Aug; 100(2):188-93. PubMed ID: 2117098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical comparison of microvascular anastomoses prepared by various suturing techniques.
    Szabo B; Fazekas L; Ghanem S; Godo ZA; Madar J; Apro A; Nemeth N
    Injury; 2020 Dec; 51(12):2866-2873. PubMed ID: 32147145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Releasing tension on a tracheal anastomosis: an ex vivo study on a sheep model.
    Zaugg Y; Cuffel C; Monnier P
    Ann Otol Rhinol Laryngol; 2006 May; 115(5):398-402. PubMed ID: 16739674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking strength of native and sutured trachea. An experimental study on sheep trachea.
    Behrend M; Kluge E; Schüttler W; Klempnauer J
    Eur Surg Res; 2001; 33(4):255-63. PubMed ID: 11684831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of n-butyl-2-cyanoacrylate on the tensile strength and pressure resistance of tracheal anastomoses ex vivo.
    Bicer YO; Koybasi S; Kazaz H; Seyhan S
    Otolaryngol Head Neck Surg; 2015 Feb; 152(2):297-301. PubMed ID: 25505258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suture or Stapling Are Superior in Comparison to Bipolar Sealing for Closing the Bronchi.
    Kirschbaum A; Waubke K; Pehl A; Steinfeldt T; Bartsch DK
    Thorac Cardiovasc Surg; 2017 Aug; 65(5):356-361. PubMed ID: 27380379
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of anastomotic suturing techniques in the rat trachea.
    Urschel JD
    J Surg Oncol; 1996 Dec; 63(4):249-50. PubMed ID: 8982369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of cartilaginous reinforcing sutures on initial tracheal anastomotic strength: a cadaver study.
    Schilt PN; Musunuru S; Kokoska M; McRae B; O'Neill D; Halum SL
    Otolaryngol Head Neck Surg; 2012 Oct; 147(4):722-5. PubMed ID: 22527049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental model to investigate initial tracheal anastomosis strength.
    Schilt PN; McRae BR; Akkus O; Cordes SR; Halum SL
    Laryngoscope; 2010 Jun; 120(6):1125-8. PubMed ID: 20513028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo analysis of dynamic tensile stresses at arterial end-to-end anastomoses. Influence of suture-line and graft on anastomotic biomechanics.
    Ulrich M; Staalsen N; Djurhuus CB; Christensen TD; Nygaard H; Hasenkam JM
    Eur J Vasc Endovasc Surg; 1999 Dec; 18(6):515-22. PubMed ID: 10637149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental use of an albumin-glutaraldehyde tissue adhesive for sealing tracheal anastomoses.
    Herget GW; Riede UN; Kassa M; Brethner L; Hasse J
    J Cardiovasc Surg (Torino); 2003 Feb; 44(1):109-13. PubMed ID: 12627081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of suture material and technique on end-to-end reconstruction in tracheal surgery: an experimental study in sheep.
    Behrend M; Klempnauer J
    Eur Surg Res; 2001; 33(3):210-6. PubMed ID: 11490124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animal model to compare the effects of suture technique on cross-sectional compliance on end-to-side anastomoses.
    Tozzi P; Hayoz D; Ruchat P; Corno A; Oedman C; Botta U; von Segesser LK
    Eur J Cardiothorac Surg; 2001 Apr; 19(4):477-81. PubMed ID: 11306316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of simple continuous versus simple interrupted suture patterns for tracheal anastomosis after large-segment tracheal resection in dogs.
    Fingland RB; Layton CI; Kennedy GA; Galland JC
    Vet Surg; 1995; 24(4):320-30. PubMed ID: 7571384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.