These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 29436538)

  • 1. Sulfur nanocomposite as a positive electrode material for rechargeable potassium-sulfur batteries.
    Liu Y; Wang W; Wang J; Zhang Y; Zhu Y; Chen Y; Fu L; Wu Y
    Chem Commun (Camb); 2018 Feb; 54(18):2288-2291. PubMed ID: 29436538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for room-temperature sodium/potassium sulfur batteries.
    Ma S; Zuo P; Zhang H; Yu Z; Cui C; He M; Yin G
    Chem Commun (Camb); 2019 May; 55(36):5267-5270. PubMed ID: 30993277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries.
    Zhao Q; Hu Y; Zhang K; Chen J
    Inorg Chem; 2014 Sep; 53(17):9000-5. PubMed ID: 25119141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na⁺/K⁺ Hybrid Battery Based on a Sulfurized Polyacrylonitrile Cathode.
    Lou J; Zhang Y; Shuai Y; Chen K; Chen S
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30909540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte.
    Vinayan BP; Zhao-Karger Z; Diemant T; Chakravadhanula VS; Schwarzburger NI; Cambaz MA; Behm RJ; Kübel C; Fichtner M
    Nanoscale; 2016 Feb; 8(6):3296-306. PubMed ID: 26542750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable Sulfur-rich Copolymer/Graphene Composite as Lithium-Sulfur Battery Cathode with Excellent Electrochemical Performance.
    Ghosh A; Shukla S; Khosla GS; Lochab B; Mitra S
    Sci Rep; 2016 Apr; 6():25207. PubMed ID: 27121089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte.
    Wang L; Li Q; Yang H; Yang J; Nuli Y; Wang J
    Chem Commun (Camb); 2016 Dec; 52(100):14430-14433. PubMed ID: 27901523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-small Co3O4 nanoparticles-reduced graphene oxide nanocomposite as superior anodes for lithium-ion batteries.
    Lou Y; Liang J; Peng Y; Chen J
    Phys Chem Chem Phys; 2015 Apr; 17(14):8885-93. PubMed ID: 25742903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries.
    Reitz C; Breitung B; Schneider A; Wang D; von der Lehr M; Leichtweiss T; Janek J; Hahn H; Brezesinski T
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10274-82. PubMed ID: 26867115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Lithium-Ion and Sodium-Ion Storage Properties from Few-Layered WS
    Pang Q; Gao Y; Zhao Y; Ju Y; Qiu H; Wei Y; Liu B; Zou B; Du F; Chen G
    Chemistry; 2017 May; 23(29):7074-7080. PubMed ID: 28374501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency.
    Gao X; Li J; Guan D; Yuan C
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4154-9. PubMed ID: 24555988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte.
    Jeong G; Kim H; Lee HS; Han YK; Park JH; Jeon JH; Song J; Lee K; Yim T; Kim KJ; Lee H; Kim YJ; Sohn HJ
    Sci Rep; 2015 Aug; 5():12827. PubMed ID: 26243052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.
    Gao P; Reddy MA; Mu X; Diemant T; Zhang L; Zhao-Karger Z; Chakravadhanula VS; Clemens O; Behm RJ; Fichtner M
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4285-90. PubMed ID: 26924132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries.
    Wang B; Li K; Su D; Ahn H; Wang G
    Chem Asian J; 2012 Jun; 7(7):1637-43. PubMed ID: 22454319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance.
    Zeng L; Huang X; Chen X; Zheng C; Qian Q; Chen Q; Wei M
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):232-9. PubMed ID: 26651359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.