BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29436709)

  • 1. Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration.
    Leithner A; Renkawitz J; De Vries I; Hauschild R; Häcker H; Sixt M
    Eur J Immunol; 2018 Jun; 48(6):1074-1077. PubMed ID: 29436709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 Immunoengineering of Hoxb8-Immortalized Progenitor Cells for Revealing CCR7-Mediated Dendritic Cell Signaling and Migration Mechanisms
    Hammerschmidt SI; Werth K; Rothe M; Galla M; Permanyer M; Patzer GE; Bubke A; Frenk DN; Selich A; Lange L; Schambach A; Bošnjak B; Förster R
    Front Immunol; 2018; 9():1949. PubMed ID: 30210501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 editing in conditionally immortalized HoxB8 cells for studying gene regulation in mouse dendritic cells.
    Xu H; Look T; Prithiviraj S; Lennartz D; Cáceres MD; Götz K; Wanek P; Häcker H; Kramann R; Seré K; Zenke M
    Eur J Immunol; 2022 Nov; 52(11):1859-1862. PubMed ID: 34826338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9.
    Gundry MC; Brunetti L; Lin A; Mayle AE; Kitano A; Wagner D; Hsu JI; Hoegenauer KA; Rooney CM; Goodell MA; Nakada D
    Cell Rep; 2016 Oct; 17(5):1453-1461. PubMed ID: 27783956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome editing for human gene therapy.
    Meissner TB; Mandal PK; Ferreira LM; Rossi DJ; Cowan CA
    Methods Enzymol; 2014; 546():273-95. PubMed ID: 25398345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators.
    Chakraborty C; Teoh SL; Das S
    Curr Drug Targets; 2017; 18(14):1653-1663. PubMed ID: 27231109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 in the Chicken Embryo.
    Morin V; Véron N; Marcelle C
    Methods Mol Biol; 2017; 1650():113-123. PubMed ID: 28809017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Genome Editing in Chicken DF-1 Cells Using the CRISPR/Cas9 System.
    Bai Y; He L; Li P; Xu K; Shao S; Ren C; Liu Z; Wei Z; Zhang Z
    G3 (Bethesda); 2016 Apr; 6(4):917-23. PubMed ID: 26869617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of Hoxb8-immortalized hematopoietic progenitors - a potent tool to study macrophage tissue migration.
    Accarias S; Sanchez T; Labrousse A; Ben-Neji M; Boyance A; Poincloux R; Maridonneau-Parini I; Le Cabec V
    J Cell Sci; 2020 Mar; 133(5):. PubMed ID: 31964707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of CRISPR/Cas9 mediated genome editing in farm animals].
    Xing YY; Yang Q; Ren J
    Yi Chuan; 2016 Mar; 38(3):217-26. PubMed ID: 27001476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of immune system via immortal bone marrow stem cells.
    Ruedl C; Khameneh HJ; Karjalainen K
    Int Immunol; 2008 Sep; 20(9):1211-8. PubMed ID: 18644831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.
    Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X
    Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using CRISPR/Cas9 Gene Editing to Investigate the Oncogenic Activity of Mutant Calreticulin in Cytokine Dependent Hematopoietic Cells.
    Abdelfattah NS; Mullally A
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals.
    Zhou JW; Xu QP; Yao J; Yu SM; Cao SZ
    Yi Chuan; 2015 Oct; 37(10):1011-20. PubMed ID: 26496753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.