BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29436987)

  • 1. Direct Observation of Intermediate State(s) in the Mechanistic Investigation of Domain Specific Protein-Surfactant Interaction.
    Yadav R; Sengupta B; Das S; Sen P
    Protein Pept Lett; 2018; 25(4):339-349. PubMed ID: 29436987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling.
    Gelamo EL; Silva CH; Imasato H; Tabak M
    Biochim Biophys Acta; 2002 Jan; 1594(1):84-99. PubMed ID: 11825611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants.
    Gelamo EL; Tabak M
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Oct; 56A(11):2255-71. PubMed ID: 11058071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin-Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer-Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy.
    Żamojć K; Wyrzykowski D; Chmurzyński L
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic probing of the microenvironment in a protein-surfactant assembly.
    Anand U; Jash C; Mukherjee S
    J Phys Chem B; 2010 Dec; 114(48):15839-45. PubMed ID: 21077590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR and circular dichroism solution studies on the interactions of bovine serum albumin with ionic surfactants and β-cyclodextrin.
    Rogozea A; Matei I; Turcu IM; Ionita G; Sahini VE; Salifoglou A
    J Phys Chem B; 2012 Dec; 116(49):14245-53. PubMed ID: 23163315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of cationic, anionic, and nonionic surfactants on alkaline-induced intermediate of bovine serum albumin.
    Qu P; Lu H; Yan S; Lu Z
    Int J Biol Macromol; 2010 Jan; 46(1):91-9. PubMed ID: 19874844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence probing of albumin-surfactant interaction.
    De S; Girigoswami A; Das S
    J Colloid Interface Sci; 2005 May; 285(2):562-73. PubMed ID: 15837473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of surfactants on preformed fibrils of human serum albumin.
    Pandey NK; Ghosh S; Dasgupta S
    Int J Biol Macromol; 2013 Aug; 59():39-45. PubMed ID: 23597713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant extracellular Glossoscolex paulistus Hemoglobin (HbGp) upon interaction with cethyltrimethylammonium chloride (CTAC) and sodium dodecyl sulphate (SDS) surfactants: Dissociation of oligomeric structure and autoxidation.
    Santiago PS; Moreira LM; de Almeida EV; Tabak M
    Biochim Biophys Acta; 2007 Apr; 1770(4):506-17. PubMed ID: 17196340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of ANS-Like Drugs from Micellar Drug Delivery Systems to Albumin Is Highly Favorable and Protected from Competition with Surfactant by "Reserved" Binding Sites.
    Carabadjac I; Vormittag LC; Muszer T; Wuth J; Ulbrich MH; Heerklotz H
    Mol Pharm; 2024 May; 21(5):2198-2211. PubMed ID: 38625037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative refolding of guanidinium hydrochloride denatured bovine serum albumin assisted by cationic and anionic surfactants via artificial chaperone protocol: Biophysical insight.
    Ishtikhar M; Siddiqui Z; Husain FM; Khan RA; Hassan I
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117510. PubMed ID: 31520999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the morphology of human serum albumin and sodium dodecyl sulfate complex: A spectroscopic and microscopic approach.
    Chatterjee S; Mukherjee TK
    J Colloid Interface Sci; 2016 Sep; 478():29-35. PubMed ID: 27280537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of micelles on protein's denaturation.
    Srivastava R; Alam MS
    Int J Biol Macromol; 2020 Feb; 145():252-261. PubMed ID: 31874269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Silico Characterization of the Binding Modes of Surfactants with Bovine Serum Albumin.
    Nnyigide OS; Lee SG; Hyun K
    Sci Rep; 2019 Jul; 9(1):10643. PubMed ID: 31337814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of surfactants on casein structure: a spectroscopic study.
    Chakraborty A; Basak S
    Colloids Surf B Biointerfaces; 2008 May; 63(1):83-90. PubMed ID: 18155889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequestration of Cetyltrimethylammonium Bromide on Gold Nanorods by Human Serum Albumin Causes Its Conformation Change.
    Azman N'; Thanh NX; Yong Kah JC
    Langmuir; 2020 Jan; 36(1):388-396. PubMed ID: 31826617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into cyclodextrin-modulated interactions between protein and surfactant at specific and nonspecific binding stages.
    Liu Y; Liu Y; Guo R
    J Colloid Interface Sci; 2010 Nov; 351(1):180-9. PubMed ID: 20701921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A femtosecond study of the interaction of human serum albumin with a surfactant (SDS).
    Mandal U; Ghosh S; Mitra G; Adhikari A; Dey S; Bhattacharyya K
    Chem Asian J; 2008 Sep; 3(8-9):1430-4. PubMed ID: 18666281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant displacement of human serum albumin adsorbed on loosely packed self-assembled monolayers: cetyltrimethylammonium bromide versus sodium dodecyl sulfate.
    Choi EJ; Foster MD
    J Colloid Interface Sci; 2003 May; 261(2):273-82. PubMed ID: 16256532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.