These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 2943724)
1. Molecular recognition of siderophores in fungi: role of iron-surrounding N-acyl residues and the peptide backbone during membrane transport in Neurospora crassa. Huschka HG; Jalal MA; van der Helm D; Winkelmann G J Bacteriol; 1986 Sep; 167(3):1020-4. PubMed ID: 2943724 [TBL] [Abstract][Full Text] [Related]
2. Evidence for a common siderophore transport system but different siderophore receptors in Neurospora crassa. Huschka H; Naegeli HU; Leuenberger-Ryf H; Keller-Schierlein W; Winkelmann G J Bacteriol; 1985 May; 162(2):715-21. PubMed ID: 2985545 [TBL] [Abstract][Full Text] [Related]
3. Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. Matzanke BF; Bill E; Trautwein AX; Winkelmann G J Bacteriol; 1987 Dec; 169(12):5873-6. PubMed ID: 2960664 [TBL] [Abstract][Full Text] [Related]
4. Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa. Matzanke BF; Bill E; Trautwein AX; Winkelmann G Biol Met; 1988; 1(1):18-25. PubMed ID: 2978956 [TBL] [Abstract][Full Text] [Related]
5. Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. Heymann P; Ernst JF; Winkelmann G FEMS Microbiol Lett; 2000 May; 186(2):221-7. PubMed ID: 10802175 [TBL] [Abstract][Full Text] [Related]
6. Iron limitation and its effect on membrane proteins and siderophore transport in Neurospora crassa. Huschka HG; Winkelmann G Biol Met; 1989; 2(2):108-13. PubMed ID: 2534965 [TBL] [Abstract][Full Text] [Related]
7. Metabolic utilization of 57Fe-labeled coprogen in Neurospora crassa. An in vivo Mössbauer study. Matzanke BF; Bill E; Müller GI; Trautwein AX; Winkelmann G Eur J Biochem; 1987 Feb; 162(3):643-50. PubMed ID: 2951253 [TBL] [Abstract][Full Text] [Related]
8. [Metabolic products of microorganisms. 120. Uptake of iron by Neurospora crassa. II. Regulation of the biosynthesis of sideramines and inhibition of iron transport by metal analogues of coprogen (author's transl)]. Winkelmann G; Barnekow A; Ilgner D; Zähner H Arch Mikrobiol; 1973; 92(4):285-300. PubMed ID: 4272844 [No Abstract] [Full Text] [Related]
9. Inhibitory effect of the partially resolved coordination isomers of chromic desferricoprogen on coprogen uptake in Neurospora crassa. Chung TD; Matzanke BF; Winkelmann G; Raymond KN J Bacteriol; 1986 Jan; 165(1):283-7. PubMed ID: 2934378 [TBL] [Abstract][Full Text] [Related]
10. Structure of ferrichrome-type siderophores with dissimilar N delta-acyl groups: asperchrome B1, B2, B3, D1, D2 and D3. Jalal MA; Hossain MB; van der Helm D; Barnes CL Biol Met; 1988; 1(2):77-89. PubMed ID: 2978949 [TBL] [Abstract][Full Text] [Related]
11. Metabolic products of microorganisms. 135. Uptake of iron by Neurospora crassa. IV. Iron transport properties of semisynthetic coprogen derivatives. Ernst J; Winkelmann G Arch Microbiol; 1974; 100(3):271-82. PubMed ID: 4281294 [No Abstract] [Full Text] [Related]
12. [Metabolic products of microorganisms. 115. Uptake of iron by Neurospora crassa. I. To the specificity of iron transport]. Winkelmann G; Zähner H Arch Mikrobiol; 1973; 88(1):49-60. PubMed ID: 4265135 [No Abstract] [Full Text] [Related]
13. Enzymatic release of iron from sideramines in fungi. NADH:sideramine oxidoreductase in Neurospora crassa. Ernst JF; Winkelmann G Biochim Biophys Acta; 1977 Nov; 500(1):27-41. PubMed ID: 144535 [TBL] [Abstract][Full Text] [Related]
14. Metabolic products of microorganisms. 132. Uptake of iron by Neurospora crassa. 3. Iron transport studies with ferrichrome-type compounds. Winkelmann G Arch Mikrobiol; 1974 Jun; 98(1):39-50. PubMed ID: 4275989 [No Abstract] [Full Text] [Related]
15. Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Charlang G; Ng B; Horowitz NH; Horowitz RM Mol Cell Biol; 1981 Feb; 1(2):94-100. PubMed ID: 6242827 [TBL] [Abstract][Full Text] [Related]
16. Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. Wiebe C; Winkelmann G J Bacteriol; 1975 Sep; 123(3):837-42. PubMed ID: 1099079 [TBL] [Abstract][Full Text] [Related]
17. Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. Müller G; Matzanke BF; Raymond KN J Bacteriol; 1984 Oct; 160(1):313-8. PubMed ID: 6480558 [TBL] [Abstract][Full Text] [Related]
18. Characterization of siderophore-mediated iron transport in Geotrichum candidum, a non-siderophore producer. Mor H; Barash I Biol Met; 1990; 2(4):209-13. PubMed ID: 2143917 [TBL] [Abstract][Full Text] [Related]
19. An attempt to localize iron-chelate binding sites on cytoplasmic membranes of fungi. Ernst J; Winkelmann G FEBS Lett; 1977 Apr; 76(1):71-6. PubMed ID: 140069 [No Abstract] [Full Text] [Related]
20. High-performance liquid chromatography of siderophores from fungi. Konetschny-Rapp S; Huschka HG; Winkelmann G; Jung G Biol Met; 1988; 1(1):9-17. PubMed ID: 2978959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]