These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29437251)

  • 41. Molecular ordering and adsorbate induced faceting in the Ag{110}-(S)-glutamic acid system.
    Jones TE; Baddeley CJ; Gerbi A; Savio L; Rocca M; Vattuone L
    Langmuir; 2005 Oct; 21(21):9468-75. PubMed ID: 16207023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Local and global chirality at surfaces: succinic acid versus tartaric acid on Cu110.
    Humblot V; Lorenzo MO; Baddeley CJ; Haq S; Raval R
    J Am Chem Soc; 2004 May; 126(20):6460-9. PubMed ID: 15149243
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure-sensitive enantiospecific adsorption on naturally chiral Cu(hkl)
    Gellman AJ; Huang Y; Koritnik AJ; Horvath JD
    J Phys Condens Matter; 2017 Jan; 29(3):034001. PubMed ID: 27845932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Explosive enantiospecific decomposition of aspartic acid on Cu surfaces.
    Mhatre BS; Dutta S; Reinicker A; Karagoz B; Gellman AJ
    Chem Commun (Camb); 2016 Dec; 52(98):14125-14128. PubMed ID: 27868121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enantiospecific Adsorption of Amino Acids on Naturally Chiral Cu{3,1,17}R&S Surfaces.
    Yun Y; Gellman AJ
    Langmuir; 2015 Jun; 31(22):6055-63. PubMed ID: 25933641
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enantiospecific desorption of R- and S-propylene oxide from D- or L-lysine modified Cu(100) surfaces.
    Cheong WY; Gellman AJ
    Langmuir; 2012 Oct; 28(43):15251-62. PubMed ID: 23020648
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular Origins of Chiral Amplification on an Achiral Surface: 2D Monolayers of Aspartic Acid on Cu(111).
    Cramer LA; Larson A; Daniels AS; Sykes ECH; Gellman AJ
    ACS Nano; 2023 Mar; 17(6):5799-5807. PubMed ID: 36877997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structures of dense glycine and alanine adlayers on chiral Cu(3,1,17) surfaces.
    Rankin RB; Sholl DS
    Langmuir; 2006 Sep; 22(19):8096-103. PubMed ID: 16952247
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enantiosensitive Bonding of Chiral Molecules on a Magnetic Substrate Investigated by Means of Electron Spectroscopies.
    Luque FJ; Niño MÁ; Spilsbury MJ; Kowalik IA; Arvanitis D; de Miguel JJ
    Chimia (Aarau); 2018 Jun; 72(6):418-423. PubMed ID: 29941079
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structures of glycine, enantiopure alanine, and racemic alanine adlayers on Cu(110) and Cu(100) surfaces.
    Rankin RB; Sholl DS
    J Phys Chem B; 2005 Sep; 109(35):16764-73. PubMed ID: 16853135
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 1,2-Dibromoethane on Cu(100): bonding structure and transformation to C2H4.
    Lin JL; Lin YS; Shih JJ; Kuo KH; Lin SK; Wu TS; Shiu MY
    J Chem Phys; 2011 Aug; 135(6):064706. PubMed ID: 21842948
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chiral Tartaric Acid Improves Fracture Toughness of Bioactive Brushite-Collagen Bone Cements.
    Sarrigiannidis SO; Moussa H; Dobre O; Dalby MJ; Tamimi F; Salmeron-Sanchez M
    ACS Appl Bio Mater; 2020 Aug; 3(8):5056-5066. PubMed ID: 32904797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global and local expression of chirality in serine on the Cu{110} surface.
    Eralp T; Shavorskiy A; Zheleva ZV; Held G; Kalashnyk N; Ning Y; Linderoth TR
    Langmuir; 2010 Dec; 26(24):18841-51. PubMed ID: 21090821
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preferential Enrichment of Enantiomer from Amino Acid Schiff Bases by Coordination Interaction and Crystallization.
    Yan L; Li Z; Zhong X; Du J; Xiong Y; Peng S; Li H
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676268
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of gold and Co-adsorbed carbon on the adsorption and thermal decomposition of acetic acid on Pd{111}.
    Owens TG; Jones TE; Noakes TC; Bailey P; Baddeley CJ
    J Phys Chem B; 2006 Oct; 110(42):21152-60. PubMed ID: 17048939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct chiral resolution of tartaric acid by ion-pair capillary electrophoresis using an aqueous background electrolyte with (1R,2R)-(-)-1,2-diaminocyclohexane as a chiral counterion.
    Kodama S; Yamamoto A; Matsunaga A; Hayakawa K
    Electrophoresis; 2003 Aug; 24(15):2711-5. PubMed ID: 12900887
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of the low-frequency vibrations of crystalline tartaric acid using terahertz spectroscopy and solid-state density functional theory.
    Witko EM; Korter TM
    J Phys Chem A; 2011 Sep; 115(35):10052-8. PubMed ID: 21846134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comprehensive study of self-assembled monolayers of anthracenethiol on gold: solvent effects, structure, and stability.
    Käfer D; Witte G; Cyganik P; Terfort A; Wöll C
    J Am Chem Soc; 2006 Feb; 128(5):1723-32. PubMed ID: 16448148
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Syntheses and characterization of copper(II) carboxylate dimers formed from enantiopure ligands containing a strong π···π stacking synthon: enantioselective single-crystal to single-crystal gas/solid-mediated transformations.
    Reger DL; Horger JJ; Debreczeni A; Smith MD
    Inorg Chem; 2011 Oct; 50(20):10225-40. PubMed ID: 21919476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assisted deprotonation of formic acid on Cu(111) and self-assembly of 1D chains.
    Baber AE; Mudiyanselage K; Senanayake SD; Beatriz-Vidal A; Luck KA; Sykes EC; Liu P; Rodriguez JA; Stacchiola DJ
    Phys Chem Chem Phys; 2013 Aug; 15(29):12291-8. PubMed ID: 23775138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.