These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29437377)

  • 41. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol.
    Periasamy AP; Ravindranath R; Senthil Kumar SM; Wu WP; Jian TR; Chang HT
    Nanoscale; 2018 Jul; 10(25):11869-11880. PubMed ID: 29897084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strategies for Improved Electrochemical CO
    Khan I
    Chem Rec; 2022 Jan; 22(1):e202100219. PubMed ID: 34480411
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sulfur doped-copper oxide nanoclusters synthesized through a facile electroplating process assisted by thiourea for selective photoelectrocatalytic reduction of CO
    Navaee A; Salimi A
    J Colloid Interface Sci; 2017 Nov; 505():241-252. PubMed ID: 28578287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of Copper Catalysts for CO2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy.
    Eilert A; Roberts FS; Friebel D; Nilsson A
    J Phys Chem Lett; 2016 Apr; 7(8):1466-70. PubMed ID: 27045045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cu
    Gao Y; Wu Q; Liang X; Wang Z; Zheng Z; Wang P; Liu Y; Dai Y; Whangbo MH; Huang B
    Adv Sci (Weinh); 2020 Mar; 7(6):1902820. PubMed ID: 32195095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stabilizing Copper by a Reconstruction-Resistant Atomic Cu-O-Si Interface for Electrochemical CO
    Tan X; Sun K; Zhuang Z; Hu B; Zhang Y; Liu Q; He C; Xu Z; Chen C; Xiao H; Chen C
    J Am Chem Soc; 2023 Apr; ():. PubMed ID: 37029738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction.
    Eilert A; Cavalca F; Roberts FS; Osterwalder J; Liu C; Favaro M; Crumlin EJ; Ogasawara H; Friebel D; Pettersson LG; Nilsson A
    J Phys Chem Lett; 2017 Jan; 8(1):285-290. PubMed ID: 27983864
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective CO
    Zhang Y; Si Z; Du H; Deng Y; Zhang Q; Wang Z; Yu Q; Xu H
    Inorg Chem; 2022 Dec; 61(50):20666-20673. PubMed ID: 36475677
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical Fragmentation of Cu
    Jung H; Lee SY; Lee CW; Cho MK; Won DH; Kim C; Oh HS; Min BK; Hwang YJ
    J Am Chem Soc; 2019 Mar; 141(11):4624-4633. PubMed ID: 30702874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unveiling the Active Structure of Single Nickel Atom Catalysis: Critical Roles of Charge Capacity and Hydrogen Bonding.
    Zhao X; Liu Y
    J Am Chem Soc; 2020 Mar; 142(12):5773-5777. PubMed ID: 32122132
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selective molecular adsorption in sub-nanometer cages of a Cu2O surface oxide.
    Mudiyanselage K; An W; Yang F; Liu P; Stacchiola DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10726-31. PubMed ID: 23685717
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces.
    Bendavid LI; Carter EA
    J Phys Chem B; 2013 Dec; 117(49):15750-60. PubMed ID: 24138294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigating the Origin of Enhanced C
    Lei Q; Zhu H; Song K; Wei N; Liu L; Zhang D; Yin J; Dong X; Yao K; Wang N; Li X; Davaasuren B; Wang J; Han Y
    J Am Chem Soc; 2020 Mar; 142(9):4213-4222. PubMed ID: 32041401
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO
    Lobaccaro P; Singh MR; Clark EL; Kwon Y; Bell AT; Ager JW
    Phys Chem Chem Phys; 2016 Sep; 18(38):26777-26785. PubMed ID: 27722320
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Revisiting the Grain and Valence Effect of Oxide-Derived Copper on Electrocatalytic CO
    Qi P; Zhao L; Deng Z; Sun H; Li H; Liu Q; Li X; Lian Y; Cheng J; Guo J; Cui Y; Peng Y
    J Phys Chem Lett; 2021 Apr; 12(16):3941-3950. PubMed ID: 33872025
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Imaging Catalytic Activation of CO
    Li L; Zhang R; Vinson J; Shirley EL; Greeley JP; Guest JR; Chan MKY
    Chem Mater; 2018; 30():. PubMed ID: 31080315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ spectroscopic monitoring of CO
    Wang L; Gupta K; Goodall JBM; Darr JA; Holt KB
    Faraday Discuss; 2017 Apr; 197():517-532. PubMed ID: 28177339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthetic Mechanism Discovery of Monophase Cuprous Oxide for Record High Photoelectrochemical Conversion of CO
    Kang HY; Nam DH; Yang KD; Joo W; Kwak H; Kim HH; Hong SH; Nam KT; Joo YC
    ACS Nano; 2018 Aug; 12(8):8187-8196. PubMed ID: 30059622
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unraveling the electrocatalytic reduction mechanism of enols on copper in aqueous media.
    Cui Z; Dong X; Cho SG; Tegomoh MN; Dai W; Dong F; Co AC
    Nat Commun; 2022 Oct; 13(1):5840. PubMed ID: 36192409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.