These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29437440)

  • 1. Metasurface for Water-to-Air Sound Transmission.
    Bok E; Park JJ; Choi H; Han CK; Wright OB; Lee SH
    Phys Rev Lett; 2018 Jan; 120(4):044302. PubMed ID: 29437440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Fluid-Type Metasurface for Wide-Angle and Multifrequency Water-Air Acoustic Transmission.
    Huang Z; Zhao S; Zhang Y; Cai Z; Li Z; Xiao J; Su M; Guo Q; Zhang C; Pan Y; Cai X; Song Y; Yang J
    Research (Wash D C); 2021; 2021():9757943. PubMed ID: 34671744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote Water-to-Air Eavesdropping with a Phase-Engineered Impedance Matching Metasurface.
    Liu J; Li Z; Liang B; Cheng JC; Alù A
    Adv Mater; 2023 Jul; 35(29):e2301799. PubMed ID: 37045589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Metasurfaces for Perfect Transmission and Customized Manipulation of Sound Across Water-Air Interface.
    Zhou HT; Zhang SC; Zhu T; Tian YZ; Wang YF; Wang YS
    Adv Sci (Weinh); 2023 Jul; 10(19):e2207181. PubMed ID: 37078801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic transmissive cloaking with adjustable capacity to the incident direction.
    Lian M; Duan L; Chen J; Jia J; Su Y; Cao T
    Microsyst Nanoeng; 2022; 8():108. PubMed ID: 36187889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lotus Metasurface for Wide-Angle Intermediate-Frequency Water-Air Acoustic Transmission.
    Huang Z; Zhao Z; Zhao S; Cai X; Zhang Y; Cai Z; Li H; Li Z; Su M; Zhang C; Pan Y; Song Y; Yang J
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53242-53251. PubMed ID: 34704730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustically sticky topographic metasurfaces for underwater sound absorption.
    Lee H; Jung M; Kim M; Shin R; Kang S; Ohm WS; Kim YT
    J Acoust Soc Am; 2018 Mar; 143(3):1534. PubMed ID: 29604707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound pressure level gain in an acoustic metamaterial cavity.
    Song K; Kim K; Hur S; Kwak JH; Park J; Yoon JR; Kim J
    Sci Rep; 2014 Dec; 4():7421. PubMed ID: 25502279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dark acoustic metamaterials as super absorbers for low-frequency sound.
    Mei J; Ma G; Yang M; Yang Z; Wen W; Sheng P
    Nat Commun; 2012 Mar; 3():756. PubMed ID: 22453829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic metasurface with hybrid resonances.
    Ma G; Yang M; Xiao S; Yang Z; Sheng P
    Nat Mater; 2014 Sep; 13(9):873-8. PubMed ID: 24880731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant extraordinary transmission of acoustic waves through a nanowire.
    Devaux T; Tozawa H; Otsuka PH; Mezil S; Tomoda M; Matsuda O; Bok E; Lee SH; Wright OB
    Sci Adv; 2020 Mar; 6(10):eaay8507. PubMed ID: 32181353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bionic Luminescent Skin as Ultrasensitive Temperature-Acoustic Sensor for Underwater Information Perception and Transmission.
    Xu X; Yan B
    Adv Mater; 2024 Jan; 36(4):e2309328. PubMed ID: 37870557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound transmission between 50 and 600 Hz in excised pig lungs filled with air and helium.
    Leung A; Sehati S; Young JD; McLeod C
    J Appl Physiol (1985); 2000 Dec; 89(6):2472-82. PubMed ID: 11090604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin Planar Metasurface-based Acoustic Energy Harvester with Deep Subwavelength Thickness and Mechanical Rigidity.
    Jin M; Liang B; Yang J; Yang J; Cheng JC
    Sci Rep; 2019 Aug; 9(1):11152. PubMed ID: 31371769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced sound transmission from water to air at low frequencies.
    McDonald BE; Calvo DC
    J Acoust Soc Am; 2007 Dec; 122(6):3159-61. PubMed ID: 18247727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep, sub-wavelength acoustic patterning of complex and non-periodic shapes on soft membranes supported by air cavities.
    Tung KW; Chung PS; Wu C; Man T; Tiwari S; Wu B; Chou YF; Yang FL; Chiou PY
    Lab Chip; 2019 Nov; 19(21):3714-3725. PubMed ID: 31584051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the modal density in plates for mono-element focusing in air.
    Etaix N; Dubois J; Fink M; Ing RK
    J Acoust Soc Am; 2013 Aug; 134(2):1049-54. PubMed ID: 23927104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental verification of enhanced sound transmission from water to air at low frequencies.
    Calvo DC; Nicholas M; Orris GJ
    J Acoust Soc Am; 2013 Nov; 134(5):3403-8. PubMed ID: 24180750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound transmission through finite lightweight multilayered structures with thin air layers.
    Dijckmans A; Vermeir G; Lauriks W
    J Acoust Soc Am; 2010 Dec; 128(6):3513-24. PubMed ID: 21218884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.