These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 29437923)
1. Adjustments to Photosystem Stoichiometry and Electron Transfer Proteins Are Key to the Remarkably Fast Growth of the Cyanobacterium Ungerer J; Lin PC; Chen HY; Pakrasi HB mBio; 2018 Feb; 9(1):. PubMed ID: 29437923 [TBL] [Abstract][Full Text] [Related]
2. Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Ungerer J; Wendt KE; Hendry JI; Maranas CD; Pakrasi HB Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11761-E11770. PubMed ID: 30409802 [TBL] [Abstract][Full Text] [Related]
3. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India. Jaiswal D; Sengupta A; Sohoni S; Sengupta S; Phadnavis AG; Pakrasi HB; Wangikar PP Sci Rep; 2018 Nov; 8(1):16632. PubMed ID: 30413737 [TBL] [Abstract][Full Text] [Related]
4. Expression of Anabaena PCC 7937 plastocyanin in Synechococcus PCC 7942 enhances photosynthetic electron transfer and alters the electron distribution between photosystem I and cytochrome-c oxidase. Geerts D; Schubert H; de Vrieze G; Borrias M; Matthijs HC; Weisbeek PJ J Biol Chem; 1994 Nov; 269(45):28068-75. PubMed ID: 7961743 [TBL] [Abstract][Full Text] [Related]
5. Tunable Repression of Key Photosynthetic Processes Using Cas12a CRISPR Interference in the Fast-Growing Cyanobacterium Knoot CJ; Biswas S; Pakrasi HB ACS Synth Biol; 2020 Jan; 9(1):132-143. PubMed ID: 31829621 [TBL] [Abstract][Full Text] [Related]
6. Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6. Hippler M; Drepper F; Rochaix JD; Mühlenhoff U J Biol Chem; 1999 Feb; 274(7):4180-8. PubMed ID: 9933614 [TBL] [Abstract][Full Text] [Related]
7. A Specific Single Nucleotide Polymorphism in the ATP Synthase Gene Significantly Improves Environmental Stress Tolerance of Synechococcus elongatus PCC 7942. Lou W; Tan X; Song K; Zhang S; Luan G; Li C; Lu X Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006407 [TBL] [Abstract][Full Text] [Related]
8. Carbon status constrains light acclimation in the cyanobacterium Synechococcus elongatus. Mackenzie TD; Burns RA; Campbell DA Plant Physiol; 2004 Oct; 136(2):3301-12. PubMed ID: 15466225 [TBL] [Abstract][Full Text] [Related]
10. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Lin PC; Zhang F; Pakrasi HB Sci Rep; 2020 Jan; 10(1):390. PubMed ID: 31942010 [TBL] [Abstract][Full Text] [Related]
11. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO₂. Yu J; Liberton M; Cliften PF; Head RD; Jacobs JM; Smith RD; Koppenaal DW; Brand JJ; Pakrasi HB Sci Rep; 2015 Jan; 5():8132. PubMed ID: 25633131 [TBL] [Abstract][Full Text] [Related]
12. Increased Photochemical Efficiency in Cyanobacteria via an Engineered Sucrose Sink. Abramson BW; Kachel B; Kramer DM; Ducat DC Plant Cell Physiol; 2016 Dec; 57(12):2451-2460. PubMed ID: 27742883 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of P700 in Photosystem I Is Essential for the Growth of Cyanobacteria. Shimakawa G; Shaku K; Miyake C Plant Physiol; 2016 Nov; 172(3):1443-1450. PubMed ID: 27613853 [TBL] [Abstract][Full Text] [Related]
14. Comparative Genomics of Synechococcus elongatus Explains the Phenotypic Diversity of the Strains. Adomako M; Ernst D; Simkovsky R; Chao YY; Wang J; Fang M; Bouchier C; Lopez-Igual R; Mazel D; Gugger M; Golden SS mBio; 2022 Jun; 13(3):e0086222. PubMed ID: 35475644 [TBL] [Abstract][Full Text] [Related]
15. New insights into the function of the iron deficiency-induced protein C from Synechococcus elongatus PCC 7942. Pietsch D; Bernát G; Kahmann U; Staiger D; Pistorius EK; Michel KP Photosynth Res; 2011 Sep; 108(2-3):121-32. PubMed ID: 21607697 [TBL] [Abstract][Full Text] [Related]
16. Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. Fraser JM; Tulk SE; Jeans JA; Campbell DA; Bibby TS; Cockshutt AM PLoS One; 2013; 8(3):e59861. PubMed ID: 23527279 [TBL] [Abstract][Full Text] [Related]
17. An alternate photosynthetic electron donor system for PSI supports light dependent nitrogen fixation in a non-heterocystous cyanobacterium, Plectonema boryanum. Misra HS; Khairnar NP; Mahajan SK J Plant Physiol; 2003 Jan; 160(1):33-9. PubMed ID: 12685043 [TBL] [Abstract][Full Text] [Related]
18. Stoichiometry of the photosynthetic apparatus and phycobilisome structure of the cyanobacterium Plectonema boryanum UTEX 485 are regulated by both light and temperature. Miskiewicz E; Ivanov AG; Huner NP Plant Physiol; 2002 Nov; 130(3):1414-25. PubMed ID: 12428006 [TBL] [Abstract][Full Text] [Related]
19. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Song K; Tan X; Liang Y; Lu X Appl Microbiol Biotechnol; 2016 Sep; 100(18):7865-75. PubMed ID: 27079574 [TBL] [Abstract][Full Text] [Related]
20. Reduction-Induced Suppression of Electron Flow (RISE) in the Photosynthetic Electron Transport System of Synechococcus elongatus PCC 7942. Shaku K; Shimakawa G; Hashiguchi M; Miyake C Plant Cell Physiol; 2016 Jul; 57(7):1443-1453. PubMed ID: 26707729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]