These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 29437923)
21. Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Bailey S; Melis A; Mackey KR; Cardol P; Finazzi G; van Dijken G; Berg GM; Arrigo K; Shrager J; Grossman A Biochim Biophys Acta; 2008 Mar; 1777(3):269-76. PubMed ID: 18241667 [TBL] [Abstract][Full Text] [Related]
22. A Novel Cyanobacterium Synechococcus elongatus PCC 11802 has Distinct Genomic and Metabolomic Characteristics Compared to its Neighbor PCC 11801. Jaiswal D; Sengupta A; Sengupta S; Madhu S; Pakrasi HB; Wangikar PP Sci Rep; 2020 Jan; 10(1):191. PubMed ID: 31932622 [TBL] [Abstract][Full Text] [Related]
23. A Ubiquitously Conserved Cyanobacterial Protein Phosphatase Essential for High Light Tolerance in a Fast-Growing Cyanobacterium. Walker PL; Pakrasi HB Microbiol Spectr; 2022 Aug; 10(4):e0100822. PubMed ID: 35727069 [TBL] [Abstract][Full Text] [Related]
24. Inactivation of the petE gene for plastocyanin lowers photosynthetic capacity and exacerbates chilling-induced photoinhibition in the cyanobacterium Synechococcus. Clarke AK; Campbell D Plant Physiol; 1996 Dec; 112(4):1551-61. PubMed ID: 8972599 [TBL] [Abstract][Full Text] [Related]
25. DNA replication depends on photosynthetic electron transport in cyanobacteria. Ohbayashi R; Watanabe S; Kanesaki Y; Narikawa R; Chibazakura T; Ikeuchi M; Yoshikawa H FEMS Microbiol Lett; 2013 Jul; 344(2):138-44. PubMed ID: 23621483 [TBL] [Abstract][Full Text] [Related]
26. Antenna Modification in a Fast-Growing Cyanobacterium Synechococcus elongatus UTEX 2973 Leads to Improved Efficiency and Carbon-Neutral Productivity. Sengupta A; Bandyopadhyay A; Schubert MG; Church GM; Pakrasi HB Microbiol Spectr; 2023 Aug; 11(4):e0050023. PubMed ID: 37318337 [TBL] [Abstract][Full Text] [Related]
27. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect. Raanan H; Oren N; Treves H; Keren N; Ohad I; Berkowicz SM; Hagemann M; Koch M; Shotland Y; Kaplan A Biochim Biophys Acta; 2016 Jun; 1857(6):715-22. PubMed ID: 26896589 [TBL] [Abstract][Full Text] [Related]
28. Role of respiratory terminal oxidases in the extracellular electron transfer ability of cyanobacteria. Sekar N; Wang J; Zhou Y; Fang Y; Yan Y; Ramasamy RP Biotechnol Bioeng; 2018 May; 115(5):1361-1366. PubMed ID: 29315517 [TBL] [Abstract][Full Text] [Related]
29. Probing the electric field across thylakoid membranes in cyanobacteria. Viola S; Bailleul B; Yu J; Nixon P; Sellés J; Joliot P; Wollman FA Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21900-21906. PubMed ID: 31591197 [TBL] [Abstract][Full Text] [Related]
30. Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. Santos-Merino M; Torrado A; Davis GA; Röttig A; Bibby TS; Kramer DM; Ducat DC Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836593 [TBL] [Abstract][Full Text] [Related]
31. Restricted capacity for PSI-dependent cyclic electron flow in ΔpetE mutant compromises the ability for acclimation to iron stress in Synechococcus sp. PCC 7942 cells. Ivanov AG; Sane PV; Simidjiev I; Park YI; Huner NP; Oquist G Biochim Biophys Acta; 2012 Aug; 1817(8):1277-84. PubMed ID: 22465025 [TBL] [Abstract][Full Text] [Related]
32. The circadian rhythm regulator RpaA modulates photosynthetic electron transport and alters the preferable temperature range for growth in a cyanobacterium. Hasegawa H; Tsurumaki T; Imamura S; Sonoike K; Tanaka K FEBS Lett; 2021 May; 595(10):1480-1492. PubMed ID: 33728661 [TBL] [Abstract][Full Text] [Related]
33. Effects of PSII Manganese-Stabilizing Protein Succinylation on Photosynthesis in the Model Cyanobacterium Synechococcus sp. PCC 7002. Liu X; Yang M; Wang Y; Chen Z; Zhang J; Lin X; Ge F; Zhao J Plant Cell Physiol; 2018 Jul; 59(7):1466-1482. PubMed ID: 29912468 [TBL] [Abstract][Full Text] [Related]
34. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Mackey KR; Paytan A; Caldeira K; Grossman AR; Moran D; McIlvin M; Saito MA Plant Physiol; 2013 Oct; 163(2):815-29. PubMed ID: 23950220 [TBL] [Abstract][Full Text] [Related]
35. Diversity in photosynthetic electron transport under [CO Shimakawa G; Akimoto S; Ueno Y; Wada A; Shaku K; Takahashi Y; Miyake C Photosynth Res; 2016 Dec; 130(1-3):293-305. PubMed ID: 27026083 [TBL] [Abstract][Full Text] [Related]
36. Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. Schubert WD; Klukas O; Krauss N; Saenger W; Fromme P; Witt HT J Mol Biol; 1997 Oct; 272(5):741-69. PubMed ID: 9368655 [TBL] [Abstract][Full Text] [Related]
37. Sulfite-stress induced functional and structural changes in the complexes of photosystems I and II in a cyanobacterium, Synechococcus elongatus PCC 7942. Kobayashi S; Tsuzuki M; Sato N Plant Cell Physiol; 2015 Aug; 56(8):1521-32. PubMed ID: 26009593 [TBL] [Abstract][Full Text] [Related]
38. Lumenal proteins involved in respiratory electron transport in the cyanobacterium Synechocystis sp. PCC6803. Manna P; Vermaas W Plant Mol Biol; 1997 Nov; 35(4):407-16. PubMed ID: 9349264 [TBL] [Abstract][Full Text] [Related]
39. Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus. Beissinger M; Sticht H; Sutter M; Ejchart A; Haehnel W; Rösch P EMBO J; 1998 Jan; 17(1):27-36. PubMed ID: 9427738 [TBL] [Abstract][Full Text] [Related]
40. Dynamics of fluxes through photosynthetic complexes in response to changing light and inorganic carbon acclimation in Synechococcus elongatus. Mackenzie TD; Johnson JM; Campbell DA Photosynth Res; 2005 Sep; 85(3):341-57. PubMed ID: 16170636 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]