BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 29438611)

  • 1. Vinylboronic Acids as Efficient Bioorthogonal Reactants for Tetrazine Labeling in Living Cells.
    Eising S; van der Linden NGA; Kleinpenning F; Bonger KM
    Bioconjug Chem; 2018 Apr; 29(4):982-986. PubMed ID: 29438611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.
    Eising S; Xin BT; Kleinpenning F; Heming JJA; Florea BI; Overkleeft HS; Bonger KM
    Chembiochem; 2018 Aug; 19(15):1648-1652. PubMed ID: 29806887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stable and Selective Tetrazines for the Coordination-Assisted Bioorthogonal Ligation with Vinylboronic Acids.
    Eising S; Engwerda AHJ; Riedijk X; Bickelhaupt FM; Bonger KM
    Bioconjug Chem; 2018 Sep; 29(9):3054-3059. PubMed ID: 30080405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vinylboronic Acids as Fast Reacting, Synthetically Accessible, and Stable Bioorthogonal Reactants in the Carboni-Lindsey Reaction.
    Eising S; Lelivelt F; Bonger KM
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12243-7. PubMed ID: 27605057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vinylboronic acid-caged prodrug activation using click-to-release tetrazine ligation.
    Lelieveldt LPWM; Eising S; Wijen A; Bonger KM
    Org Biomol Chem; 2019 Oct; 17(39):8816-8821. PubMed ID: 31553012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles.
    Wu H; Devaraj NK
    Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular bioorthogonal labeling of glucagon receptor via tetrazine ligation.
    Tian Y; Fang M; Lin Q
    Bioorg Med Chem; 2021 Aug; 43():116256. PubMed ID: 34153838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomedical applications of tetrazine cycloadditions.
    Devaraj NK; Weissleder R
    Acc Chem Res; 2011 Sep; 44(9):816-27. PubMed ID: 21627112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boronic Acids as Bioorthogonal Probes for Site-Selective Labeling of Proteins.
    Akgun B; Hall DG
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13028-13044. PubMed ID: 29723444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-Specific Protein Labeling with Tetrazine Amino Acids.
    Blizzard RJ; Gibson TE; Mehl RA
    Methods Mol Biol; 2018; 1728():201-217. PubMed ID: 29405000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergic "Click" Boronate/Thiosemicarbazone System for Fast and Irreversible Bioorthogonal Conjugation in Live Cells.
    Akgun B; Li C; Hao Y; Lambkin G; Derda R; Hall DG
    J Am Chem Soc; 2017 Oct; 139(40):14285-14291. PubMed ID: 28891646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spirohexene-Tetrazine Ligation Enables Bioorthogonal Labeling of Class B G Protein-Coupled Receptors in Live Cells.
    Ramil CP; Dong M; An P; Lewandowski TM; Yu Z; Miller LJ; Lin Q
    J Am Chem Soc; 2017 Sep; 139(38):13376-13386. PubMed ID: 28876923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne-Tetrazine Cycloaddition Reactions that Form Pyridazine Products.
    Siegl SJ; Galeta J; Dzijak R; Dračínský M; Vrabel M
    Chempluschem; 2019 May; 84(5):493-497. PubMed ID: 31245251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second Generation TQ-Ligation for Cell Organelle Imaging.
    Zhang X; Dong T; Li Q; Liu X; Li L; Chen S; Lei X
    ACS Chem Biol; 2015 Jul; 10(7):1676-83. PubMed ID: 25901763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy.
    Beliu G; Kurz AJ; Kuhlemann AC; Behringer-Pliess L; Meub M; Wolf N; Seibel J; Shi ZD; Schnermann M; Grimm JB; Lavis LD; Doose S; Sauer M
    Commun Biol; 2019; 2():261. PubMed ID: 31341960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkoxy Tetrazine Substitution at a Boron Center: A Strategy for Synthesizing Highly Fluorogenic Hydrophilic Probes.
    Wu M; Wu X; Wang Y; Gu L; You J; Wu H; Feng P
    Chembiochem; 2018 Mar; 19(6):530-534. PubMed ID: 29314618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry.
    Liu L; Zhang D; Johnson M; Devaraj NK
    Nat Chem; 2022 Sep; 14(9):1078-1085. PubMed ID: 35788560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional Singlet Oxygen Generation through a Bioorthogonal DNA-targeted Tetrazine Reaction.
    Linden G; Zhang L; Pieck F; Linne U; Kosenkov D; Tonner R; Vázquez O
    Angew Chem Int Ed Engl; 2019 Sep; 58(37):12868-12873. PubMed ID: 31291504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-induced and Rapid Labeling of Tetrazine-Bearing Proteins via Cyclopropenone-Caged Bicyclononynes.
    Mayer SV; Murnauer A; von Wrisberg MK; Jokisch ML; Lang K
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15876-15882. PubMed ID: 31476269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Installation of Minimal Tetrazines through Silver-Mediated Liebeskind-Srogl Coupling with Arylboronic Acids.
    Lambert WD; Fang Y; Mahapatra S; Huang Z; Am Ende CW; Fox JM
    J Am Chem Soc; 2019 Oct; 141(43):17068-17074. PubMed ID: 31603679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.