These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 2943867)
1. Continuous visual information may be important after all: a failure to replicate Thomson (1983). Elliott D J Exp Psychol Hum Percept Perform; 1986 Aug; 12(3):388-91. PubMed ID: 2943867 [TBL] [Abstract][Full Text] [Related]
2. Intermittent versus continuous visual control: a reply to Elliott. Thomson JA J Exp Psychol Hum Percept Perform; 1986 Aug; 12(3):392-3. PubMed ID: 2943868 [TBL] [Abstract][Full Text] [Related]
3. The effects of time and distance on accuracy of target-directed locomotion: does an accurate short-term memory for spatial location exist? Steenhuis RE; Goodale MA J Mot Behav; 1988 Dec; 20(4):399-415. PubMed ID: 15078616 [TBL] [Abstract][Full Text] [Related]
4. On the open-loop and feedback processes that underlie the formation of trajectories during visual and nonvisual locomotion in humans. Pham QC; Hicheur H J Neurophysiol; 2009 Nov; 102(5):2800-15. PubMed ID: 19741106 [TBL] [Abstract][Full Text] [Related]
5. Fast, accurate reaching movements with a visual-to-auditory sensory substitution device. Levy-Tzedek S; Hanassy S; Abboud S; Maidenbaum S; Amedi A Restor Neurol Neurosci; 2012; 30(4):313-23. PubMed ID: 22596353 [TBL] [Abstract][Full Text] [Related]
6. Obstacle avoidance during locomotion using haptic information in normally sighted humans. Patla AE; Davies TC; Niechwiej E Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274 [TBL] [Abstract][Full Text] [Related]
7. How the lack of visuomotor feedback affects even the early stages of goal-directed pointing movements. Sheth BR; Shimojo S Exp Brain Res; 2002 Mar; 143(2):181-90. PubMed ID: 11880894 [TBL] [Abstract][Full Text] [Related]
8. Hand preshaping in Parkinson's disease: effects of visual feedback and medication state. Schettino LF; Adamovich SV; Hening W; Tunik E; Sage J; Poizner H Exp Brain Res; 2006 Jan; 168(1-2):186-202. PubMed ID: 16041510 [TBL] [Abstract][Full Text] [Related]
9. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements. Bédard P; Proteau L Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468 [TBL] [Abstract][Full Text] [Related]
10. The contribution of vision, proprioception, and efference copy in storing a neural representation for guiding trail leg trajectory over an obstacle. Lajoie K; Bloomfield LW; Nelson FJ; Suh JJ; Marigold DS J Neurophysiol; 2012 Apr; 107(8):2283-93. PubMed ID: 22298832 [TBL] [Abstract][Full Text] [Related]
11. Guiding movements with internal representations: a reach-and-grasp task. Fourkas AD; Marteniuk RG; Khan MA Res Q Exerc Sport; 2003 Jun; 74(2):165-72. PubMed ID: 12848229 [TBL] [Abstract][Full Text] [Related]
12. Evidence of a limited visuo-motor memory used in programming wrist movements. Miall RC; Haggard PN; Cole JD Exp Brain Res; 1995; 107(2):267-80. PubMed ID: 8773245 [TBL] [Abstract][Full Text] [Related]
13. Effects of aging on pointing movements under restricted visual feedback conditions. Zhang L; Yang J; Inai Y; Huang Q; Wu J Hum Mov Sci; 2015 Apr; 40():1-13. PubMed ID: 25506638 [TBL] [Abstract][Full Text] [Related]
14. The role of lower peripheral visual cues in the visuomotor coordination of locomotion and prehension. Graci V Gait Posture; 2011 Oct; 34(4):514-8. PubMed ID: 21807520 [TBL] [Abstract][Full Text] [Related]
15. Effects of object shape and visual feedback on hand configuration during grasping. Schettino LF; Adamovich SV; Poizner H Exp Brain Res; 2003 Jul; 151(2):158-66. PubMed ID: 12783144 [TBL] [Abstract][Full Text] [Related]
16. Visual feedback has differential effects on reaching movements in Parkinson's and Alzheimer's disease. Ghilardi MF; Alberoni M; Rossi M; Franceschi M; Mariani C; Fazio F Brain Res; 2000 Sep; 876(1-2):112-23. PubMed ID: 10973599 [TBL] [Abstract][Full Text] [Related]
17. The role of visual reafferents during a pointing movement: comparative study between open-loop and closed-loop performances in monkeys before and after unilateral electrolytic lesion of the substantia nigra. Viallet F; Trouche E; Beaubaton D; Legallet E Exp Brain Res; 1987; 65(2):399-410. PubMed ID: 3556467 [TBL] [Abstract][Full Text] [Related]
18. Adaptations of lateral hand movements to early and late visual occlusion in catching. Dessing JC; Oostwoud Wijdenes L; Peper CL; Beek PJ Exp Brain Res; 2009 Feb; 192(4):669-82. PubMed ID: 18936928 [TBL] [Abstract][Full Text] [Related]
19. No evidence of a lower visual field specialization for visuomotor control. Binsted G; Heath M Exp Brain Res; 2005 Mar; 162(1):89-94. PubMed ID: 15517212 [TBL] [Abstract][Full Text] [Related]
20. Untangling visual and proprioceptive contributions to hand localisation over time. Bellan V; Gilpin HR; Stanton TR; Newport R; Gallace A; Moseley GL Exp Brain Res; 2015 Jun; 233(6):1689-701. PubMed ID: 25757958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]