BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29438735)

  • 1. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats.
    Rader EP; Naimo MA; Ensey J; Baker BA
    Exp Gerontol; 2018 Apr; 104():118-126. PubMed ID: 29438735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Skeletal Muscle in Aged Rats Following High-Intensity Stretch-Shortening Contraction Training.
    Rader EP; Naimo MA; Layner KN; Triscuit AM; Chetlin RD; Ensey J; Baker BA
    Rejuvenation Res; 2017 Apr; 20(2):93-102. PubMed ID: 27378453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training.
    Rader EP; Naimo MA; Ensey J; Baker BA
    BMC Musculoskelet Disord; 2017 Feb; 18(1):60. PubMed ID: 28148306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic exposure to stretch-shortening contractions results in skeletal muscle adaptation in young rats and maladaptation in old rats.
    Cutlip RG; Baker BA; Geronilla KB; Mercer RR; Kashon ML; Miller GR; Murlasits Z; Alway SE
    Appl Physiol Nutr Metab; 2006 Oct; 31(5):573-87. PubMed ID: 17111012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of velocity of stretch-shortening contractions on muscle performance during chronic exposure: age effects.
    Cutlip RG; Baker BA; Geronilla KB; Kashon ML; Wu JZ
    Appl Physiol Nutr Metab; 2007 Jun; 32(3):443-53. PubMed ID: 17510679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced frequency of resistance-type exercise training promotes adaptation of the aged skeletal muscle microenvironment.
    Naimo MA; Rader EP; Ensey J; Kashon ML; Baker BA
    J Appl Physiol (1985); 2019 Apr; 126(4):1074-1087. PubMed ID: 30676867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glutathione depletion and age on skeletal muscle performance and morphology following chronic stretch-shortening contraction exposure.
    Baker BA; Hollander MS; Kashon ML; Cutlip RG
    Eur J Appl Physiol; 2010 Feb; 108(3):619-30. PubMed ID: 19882165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Eccentric Contraction Duration on Muscle Strength, Power Production, Vertical Jump, and Soreness.
    Mike JN; Cole N; Herrera C; VanDusseldorp T; Kravitz L; Kerksick CM
    J Strength Cond Res; 2017 Mar; 31(3):773-786. PubMed ID: 27787464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of age and glutathione levels on oxidative stress in rats after chronic exposure to stretch-shortening contractions.
    Hollander MS; Baker BA; Ensey J; Kashon ML; Cutlip RG
    Eur J Appl Physiol; 2010 Feb; 108(3):589-97. PubMed ID: 19882168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-dependent Muscle Adaptation after Chronic Stretch-shortening Contractions in Rats.
    Rader EP; Layner K; Triscuit AM; Chetlin RD; Ensey J; Baker BA
    Aging Dis; 2016 Jan; 7(1):1-13. PubMed ID: 26816659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desensitized morphological and cytokine response after stretch-shortening muscle contractions as a feature of aging in rats.
    Rader EP; Layner KN; Triscuit AM; Kashon ML; Gu JK; Ensey J; Baker BA
    Exp Gerontol; 2015 Dec; 72():138-49. PubMed ID: 26454037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretch-shortening cycles protect against the age-related loss of power generation in rat single muscle fibres.
    Patterson MA; Hinks A; Njai BS; Dalton BE; Hubbard EF; Power GA
    Exp Gerontol; 2024 Jun; 190():112423. PubMed ID: 38608790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance training increases heat shock protein levels in skeletal muscle of young and old rats.
    Murlasits Z; Cutlip RG; Geronilla KB; Rao KM; Wonderlin WF; Alway SE
    Exp Gerontol; 2006 Apr; 41(4):398-406. PubMed ID: 16524679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated stretch-shortening contraction of the triceps surae attenuates muscle atrophy and liver dysfunction in a rat model of inflammation.
    Sumi K; Ashida K; Nakazato K
    Exp Physiol; 2020 Jul; 105(7):1111-1123. PubMed ID: 32394614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of force deficit after lengthening contractions in soleus muscle from trained rats.
    Gosselin LE
    J Appl Physiol (1985); 2000 Apr; 88(4):1254-8. PubMed ID: 10749815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the expression of calcitonin gene-related peptide after exposure to injurious stretch-shortening contractions.
    Johnson C; Miller GR; Baker BA; Hollander M; Kashon ML; Waugh S; Krajnak K
    Exp Gerontol; 2016 Jun; 79():1-7. PubMed ID: 26972633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental chronic low-frequency resistance training produces skeletal muscle hypertrophy in the absence of muscle damage and metabolic stress markers.
    Zanchi NE; Lira FS; Seelaender M; Lancha AH
    Cell Biochem Funct; 2010 Apr; 28(3):232-8. PubMed ID: 20373468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent stress response DNA demethylation and gene upregulation accompany nuclear and skeletal muscle remodeling following acute resistance-type exercise in rats.
    Rader EP; Baker BA
    Facets (Ott); 2020 Jun; 5(1):455-473. PubMed ID: 32775614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptations in rat skeletal muscle following long-term resistance exercise training.
    Duncan ND; Williams DA; Lynch GS
    Eur J Appl Physiol Occup Physiol; 1998 Mar; 77(4):372-8. PubMed ID: 9562367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive stretch-shortening contractions: diminished regenerative capacity with aging.
    Baker BA; Hollander MS; Mercer RR; Kashon ML; Cutlip RG
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1181-91. PubMed ID: 19088776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.