These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 29438809)
1. Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway. Kim JW; Phuong NL; Aramaki SI; Ito K Respir Physiol Neurobiol; 2018 May; 251():16-27. PubMed ID: 29438809 [TBL] [Abstract][Full Text] [Related]
2. CFD analysis of the flow structure in a monkey upper airway validated by PIV experiments. Phuong NL; Quang TV; Khoa ND; Kim JW; Ito K Respir Physiol Neurobiol; 2020 Jan; 271():103304. PubMed ID: 31546025 [TBL] [Abstract][Full Text] [Related]
3. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry. de Rochefort L; Vial L; Fodil R; Maître X; Louis B; Isabey D; Caillibotte G; Thiriet M; Bittoun J; Durand E; Sbirlea-Apiou G J Appl Physiol (1985); 2007 May; 102(5):2012-23. PubMed ID: 17289906 [TBL] [Abstract][Full Text] [Related]
4. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Xu X; Wu J; Weng W; Fu M Biomech Model Mechanobiol; 2020 Oct; 19(5):1679-1695. PubMed ID: 32026145 [TBL] [Abstract][Full Text] [Related]
5. In silico investigation of sneezing in a full real human upper airway using computational fluid dynamics method. Mortazavy Beni H; Hassani K; Khorramymehr S Comput Methods Programs Biomed; 2019 Aug; 177():203-209. PubMed ID: 31319949 [TBL] [Abstract][Full Text] [Related]
6. Numerical study of the effects of bronchial structural abnormalities on respiratory flow distribution. Yu S; Wang J; Sun X; Liu Y Biomed Eng Online; 2016 Dec; 15(Suppl 2):164. PubMed ID: 28155703 [TBL] [Abstract][Full Text] [Related]
7. Study of the variability in upper and lower airway morphology in Sprague-Dawley rats using modern micro-CT scan-based segmentation techniques. De Backer JW; Vos WG; Burnell P; Verhulst SL; Salmon P; De Clerck N; De Backer W Anat Rec (Hoboken); 2009 May; 292(5):720-7. PubMed ID: 19322825 [TBL] [Abstract][Full Text] [Related]
8. Assessment of PIV performance in validating CFD models from nasal cavity CBCT scans. Ormiskangas J; Valtonen O; Kivekäs I; Dean M; Poe D; Järnstedt J; Lekkala J; Harju T; Saarenrinne P; Rautiainen M Respir Physiol Neurobiol; 2020 Nov; 282():103508. PubMed ID: 32739458 [TBL] [Abstract][Full Text] [Related]
9. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation. Carrigy NB; Ruzycki CA; Golshahi L; Finlay WH J Aerosol Med Pulm Drug Deliv; 2014 Jun; 27(3):149-69. PubMed ID: 24870701 [TBL] [Abstract][Full Text] [Related]
10. Particle image velocimetry measurements for the study of nasal airflow. Kim JK; Yoon JH; Kim CH; Nam TW; Shim DB; Shin HA Acta Otolaryngol; 2006 Mar; 126(3):282-7. PubMed ID: 16618655 [TBL] [Abstract][Full Text] [Related]
11. Particle and inhalation exposure in human and monkey computational airway models. Lu Phuong N; Dang Khoa N; Inthavong K; Ito K Inhal Toxicol; 2018; 30(11-12):416-428. PubMed ID: 30618352 [TBL] [Abstract][Full Text] [Related]
12. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways. Naseri A; Shaghaghian S; Abouali O; Ahmadi G Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875 [TBL] [Abstract][Full Text] [Related]
13. Effects of temporally varying inlet conditions on flow and particle deposition in the small bronchial tubes. Soni B; Thompson D Int J Numer Method Biomed Eng; 2012 Sep; 28(9):915-36. PubMed ID: 22941923 [TBL] [Abstract][Full Text] [Related]
14. Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model. Xu XY; Ni SJ; Fu M; Zheng X; Luo N; Weng WG J Therm Biol; 2017 Dec; 70(Pt A):53-63. PubMed ID: 29074026 [TBL] [Abstract][Full Text] [Related]
16. Simulation of turbulent airflow using a CT based upper airway model of a racehorse. Rakesh V; Datta AK; Ducharme NG; Pease AP J Biomech Eng; 2008 Jun; 130(3):031011. PubMed ID: 18532860 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways. Xi J; Longest PW Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605 [TBL] [Abstract][Full Text] [Related]
18. Computational model of particle deposition in the nasal cavity under steady and dynamic flow. Karakosta P; Alexopoulos AH; Kiparissides C Comput Methods Biomech Biomed Engin; 2015; 18(5):514-26. PubMed ID: 23971966 [TBL] [Abstract][Full Text] [Related]
19. Effects of single-sided inferior turbinectomy on nasal function and airflow characteristics. Na Y; Chung KS; Chung SK; Kim SK Respir Physiol Neurobiol; 2012 Mar; 180(2-3):289-97. PubMed ID: 22227321 [TBL] [Abstract][Full Text] [Related]
20. Unsteady flow characteristics through a human nasal airway. Lee JH; Na Y; Kim SK; Chung SK Respir Physiol Neurobiol; 2010 Jul; 172(3):136-46. PubMed ID: 20471501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]