These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 29439241)

  • 61. Near-infrared photoactivatable control of Ca(2+) signaling and optogenetic immunomodulation.
    He L; Zhang Y; Ma G; Tan P; Li Z; Zang S; Wu X; Jing J; Fang S; Zhou L; Wang Y; Huang Y; Hogan PG; Han G; Zhou Y
    Elife; 2015 Dec; 4():. PubMed ID: 26646180
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain.
    Lu L; Gutruf P; Xia L; Bhatti DL; Wang X; Vazquez-Guardado A; Ning X; Shen X; Sang T; Ma R; Pakeltis G; Sobczak G; Zhang H; Seo DO; Xue M; Yin L; Chanda D; Sheng X; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1374-E1383. PubMed ID: 29378934
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optical modulation goes deep in the brain.
    Chen S
    Science; 2019 Aug; 365(6452):456-457. PubMed ID: 31371606
    [No Abstract]   [Full Text] [Related]  

  • 64. Optogenetics and deep brain stimulation neurotechnologies.
    Kondabolu K; Kowalski MM; Roberts EA; Han X
    Handb Exp Pharmacol; 2015; 228():441-50. PubMed ID: 25977092
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optogenetic Approaches for Mesoscopic Brain Mapping.
    Kyweriga M; Mohajerani MH
    Methods Mol Biol; 2016; 1408():251-65. PubMed ID: 26965128
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optical developments for optogenetics.
    Papagiakoumou E
    Biol Cell; 2013 Oct; 105(10):443-64. PubMed ID: 23782010
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Large Timescale Interrogation of Neuronal Function by Fiberless Optogenetics Using Lanthanide Micro-particles.
    Miyazaki T; Chowdhury S; Yamashita T; Matsubara T; Yawo H; Yuasa H; Yamanaka A
    Cell Rep; 2019 Jan; 26(4):1033-1043.e5. PubMed ID: 30673599
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Non-scanning fiber-optic near-infrared beam led to two-photon optogenetic stimulation in-vivo.
    Dhakal KR; Gu L; Shivalingaiah S; Dennis TS; Morris-Bobzean SA; Li T; Perrotti LI; Mohanty SK
    PLoS One; 2014; 9(11):e111488. PubMed ID: 25383687
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Near-infrared light-triggered release of small molecules for controlled differentiation and long-term tracking of stem cells in vivo using upconversion nanoparticles.
    Li J; Lee WY; Wu T; Xu J; Zhang K; Hong Wong DS; Li R; Li G; Bian L
    Biomaterials; 2016 Dec; 110():1-10. PubMed ID: 27693946
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Shining light on translational research in deep brain stimulation].
    Lüscher C; Davoine E; Bellone C
    Rev Med Suisse; 2015 Apr; 11(472):987-8, 990-1. PubMed ID: 26062226
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics.
    Stujenske JM; Spellman T; Gordon JA
    Cell Rep; 2015 Jul; 12(3):525-34. PubMed ID: 26166563
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optogenetically inspired deep brain stimulation: linking basic with clinical research.
    Lüscher C; Pollak P
    Swiss Med Wkly; 2016; 146():w14278. PubMed ID: 27045196
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Upconversion Nanocarriers Encapsulated with Photoactivatable Ru Complexes for Near-Infrared Light-Regulated Enzyme Activity.
    Chen Z; Thiramanas R; Schwendy M; Xie C; Parekh SH; Mailänder V; Wu S
    Small; 2017 Dec; 13(46):. PubMed ID: 29024342
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Excitatory/Inhibitory Responses Shape Coherent Neuronal Dynamics Driven by Optogenetic Stimulation in the Primate Brain.
    Shewcraft RA; Dean HL; Fabiszak MM; Hagan MA; Wong YT; Pesaran B
    J Neurosci; 2020 Mar; 40(10):2056-2068. PubMed ID: 31964718
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders.
    Cho KK; Sohal VS
    Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In Vivo Optogenetics with Stimulus Calibration.
    Coddington LT; Dudman JT
    Methods Mol Biol; 2021; 2188():273-283. PubMed ID: 33119857
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Opto nongenetics inhibition of neuronal firing.
    Ait Ouares K; Beurrier C; Canepari M; Laverne G; Kuczewski N
    Eur J Neurosci; 2019 Jan; 49(1):6-26. PubMed ID: 30387216
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Upconverting-nanoparticle-assisted photochemistry induced by low-intensity near-infrared light: how low can we go?
    Chen Z; Sun W; Butt HJ; Wu S
    Chemistry; 2015 Jun; 21(25):9165-70. PubMed ID: 25965187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.