BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29439363)

  • 21. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study.
    McKay WB; Tuel SM; Sherwood AM; Stokić DS; Dimitrijević MR
    Exp Brain Res; 1995; 105(2):276-82. PubMed ID: 7498380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A stable late soleus EMG response elicited by cortical stimulation during voluntary ankle dorsiflexion.
    Ertekin C; Ertaş M; Efendi H; Larsson LE; Sirin H; Araç N; Toygar A; Demir Y
    Electroencephalogr Clin Neurophysiol; 1995 Oct; 97(5):275-83. PubMed ID: 7489691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric activation of motor cortex controlling human anterior digastric muscles during speech and target-directed jaw movements.
    Sowman PF; Flavel SC; McShane CL; Sakuma S; Miles TS; Nordstrom MA
    J Neurophysiol; 2009 Jul; 102(1):159-66. PubMed ID: 19420123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reliability of corticomotor excitability in leg and thigh musculature at 14 and 28 days.
    Luc BA; Lepley AS; Tevald MA; Gribble PA; White DB; Pietrosimone BG
    J Sport Rehabil; 2014 Nov; 23(4):330-8. PubMed ID: 24084315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TMS coil orientation and muscle activation influence lower limb intracortical excitability.
    Hand BJ; Opie GM; Sidhu SK; Semmler JG
    Brain Res; 2020 Nov; 1746():147027. PubMed ID: 32717277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of remote muscle contraction on transcranial magnetic stimulation-induced motor evoked potentials and silent periods in humans.
    Tazoe T; Sakamoto M; Nakajima T; Endoh T; Komiyama T
    Clin Neurophysiol; 2007 Jun; 118(6):1204-12. PubMed ID: 17449319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of sensory deprivation and perturbation of trigeminal afferent fibers on corticomotor control of human tongue musculature.
    Halkjaer L; Melsen B; McMillan AS; Svensson P
    Exp Brain Res; 2006 Apr; 170(2):199-205. PubMed ID: 16328282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Central contributions to torque depression: an antagonist perspective.
    Sypkes CT; Contento VS; Bent LR; McNeil CJ; Power GA
    Exp Brain Res; 2019 Feb; 237(2):443-452. PubMed ID: 30456694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Downregulating Aberrant Motor Evoked Potential Synergies of the Lower Extremity Post Stroke During TMS of the Contralesional Hemisphere.
    Tan AQ; Shemmell J; Dhaher YY
    Brain Stimul; 2016; 9(3):396-405. PubMed ID: 26927733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nature of facilitation of leg muscle motor evoked potentials by knee flexion.
    Izumi SI; Furukawa T; Koyama Y; Ishida A
    Somatosens Mot Res; 2001; 18(4):322-9. PubMed ID: 11794734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age and muscle-dependent variations in corticospinal excitability during standing tasks.
    Remaud A; Bilodeau M; Tremblay F
    PLoS One; 2014; 9(10):e110004. PubMed ID: 25310218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS) on corticomotor excitability.
    Ataoglu EE; Caglayan HB; Cengiz B
    Exp Brain Res; 2017 Sep; 235(9):2653-2659. PubMed ID: 28577024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks.
    Mouthon A; Ruffieux J; Wälchli M; Keller M; Taube W
    Neuroscience; 2015 Sep; 303():535-43. PubMed ID: 26192097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Standing Neurophysiological Assessment of Lower Extremity Muscles Post-Stroke.
    Kindred JH; Finetto C; Cash JJ; Bowden MG
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Posture-related changes in heteronymous recurrent inhibition from quadriceps to ankle muscles in humans.
    Barbeau H; Marchand-Pauvert V; Meunier S; Nicolas G; Pierrot-Deseilligny E
    Exp Brain Res; 2000 Feb; 130(3):345-61. PubMed ID: 10706434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of intracortical inhibition in soleus muscle during postural activity.
    Soto O; Valls-Solé J; Shanahan P; Rothwell J
    J Neurophysiol; 2006 Oct; 96(4):1711-7. PubMed ID: 16790603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An enhanced level of motor cortical excitability during the control of human standing.
    Tokuno CD; Taube W; Cresswell AG
    Acta Physiol (Oxf); 2009 Mar; 195(3):385-95. PubMed ID: 18774948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical contributions to anticipatory postural adjustments in the trunk.
    Chiou SY; Hurry M; Reed T; Quek JX; Strutton PH
    J Physiol; 2018 Apr; 596(7):1295-1306. PubMed ID: 29368403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Independent modulation of corticospinal and group I afferents pathways during upright standing.
    Baudry S; Duchateau J
    Neuroscience; 2014 Sep; 275():162-9. PubMed ID: 24952331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.