These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 29439498)
41. Unidentified inert ingredients in pesticides: implications for human and environmental health. Cox C; Surgan M Environ Health Perspect; 2006 Dec; 114(12):1803-6. PubMed ID: 17185266 [TBL] [Abstract][Full Text] [Related]
42. MOF-based stimuli-responsive controlled release nanopesticide: mini review. Hu S; Yan C; Fei Q; Zhang B; Wu W Front Chem; 2023; 11():1272725. PubMed ID: 37767340 [TBL] [Abstract][Full Text] [Related]
43. Coprecipitation-based synchronous chlorantraniliprole encapsulation with chitosan: carrier-pesticide interactions and release behavior. Wang M; Kong XP; Li H; Ge JC; Han XZ; Liu JH; Yu SL; Li W; Li DL; Wang J Pest Manag Sci; 2023 Oct; 79(10):3757-3766. PubMed ID: 37198750 [TBL] [Abstract][Full Text] [Related]
44. Enzyme-responsive controlled-release materials for food preservation and crop protection - A review. Dong Y; Jiang T; Wu T; Wang W; Xie Z; Yu X; Peng Y; Wang L; Xiao Y; Zhong T Int J Biol Macromol; 2024 Jan; 254(Pt 3):128051. PubMed ID: 37956811 [TBL] [Abstract][Full Text] [Related]
45. A Near-Infrared and Temperature-Responsive Pesticide Release Platform through Core-Shell Polydopamine@PNIPAm Nanocomposites. Xu X; Bai B; Wang H; Suo Y ACS Appl Mater Interfaces; 2017 Feb; 9(7):6424-6432. PubMed ID: 28124891 [TBL] [Abstract][Full Text] [Related]
46. Systematic review of comparative studies assessing the toxicity of pesticide active ingredients and their product formulations. Nagy K; Duca RC; Lovas S; Creta M; Scheepers PTJ; Godderis L; Ádám B Environ Res; 2020 Feb; 181():108926. PubMed ID: 31791711 [TBL] [Abstract][Full Text] [Related]
47. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
48. Preparation and characterization of a novel controlled-release nano-delivery system loaded with pyraclostrobin via high-pressure homogenization. Wang A; Cui J; Wang Y; Zhu H; Li N; Wang C; Shen Y; Liu P; Cui B; Sun C; Zhao X; Wang C; Gao F; Zeng Z; Cui H Pest Manag Sci; 2020 Aug; 76(8):2829-2837. PubMed ID: 32246522 [TBL] [Abstract][Full Text] [Related]
49. Eco-Efficient Systems Based on Nanocarriers for the Controlled Release of Fertilizers and Pesticides: Toward Smart Agriculture. Fincheira P; Hoffmann N; Tortella G; Ruiz A; Cornejo P; Diez MC; Seabra AB; Benavides-Mendoza A; Rubilar O Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446494 [TBL] [Abstract][Full Text] [Related]
50. Environmentally Friendly Zr-Based MOF for Pesticide Delivery: Ultrahigh Loading Capacity, pH-Responsive Release, Improved Leaf Affinity, and Enhanced Antipest Activity. Song S; Wan M; Feng W; Tian Y; Jiang X; Luo Y; Shen J Langmuir; 2022 Sep; 38(35):10867-10874. PubMed ID: 36007159 [TBL] [Abstract][Full Text] [Related]
51. Coumarin-Containing Light-Responsive Carboxymethyl Chitosan Micelles as Nanocarriers for Controlled Release of Pesticide. Feng S; Wang J; Zhang L; Chen Q; Yue W; Ke N; Xie H Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33019778 [TBL] [Abstract][Full Text] [Related]
52. Impacts of a novel controlled-release TiO Nederstigt TAP; Peijnenburg WJGM; Schrama M; van Ommen JR; Vijver MG Sci Total Environ; 2022 Sep; 838(Pt 4):156554. PubMed ID: 35691359 [TBL] [Abstract][Full Text] [Related]
53. Challenges and effectiveness of nanotechnology-based photocatalysis for pesticides-contaminated water: A review. Kajitvichyanukul P; Nguyen VH; Boonupara T; Phan Thi LA; Watcharenwong A; Sumitsawan S; Udomkun P Environ Res; 2022 Sep; 212(Pt C):113336. PubMed ID: 35580668 [TBL] [Abstract][Full Text] [Related]
54. An environmental-friendly pesticide-fertilizer combination fabricated by in-situ synthesis of ZIF-8. Ma S; Ji Y; Dong Y; Chen S; Wang Y; Lü S Sci Total Environ; 2021 Oct; 789():147845. PubMed ID: 34058575 [TBL] [Abstract][Full Text] [Related]
55. Stable isotope composition of pesticides in commercial formulations: The ISOTOPEST database. Masbou J; Höhener P; Payraudeau S; Martin-Laurent F; Imfeld G Chemosphere; 2024 Mar; 352():141488. PubMed ID: 38368960 [TBL] [Abstract][Full Text] [Related]
56. Pectin functionalized metal-organic frameworks as dual-stimuli-responsive carriers to improve the pesticide targeting and reduce environmental risks. Liang Y; Wang S; Jia H; Yao Y; Song J; Dong H; Cao Y; Zhu F; Huo Z Colloids Surf B Biointerfaces; 2022 Nov; 219():112796. PubMed ID: 36063717 [TBL] [Abstract][Full Text] [Related]
57. pH-responsive release and washout resistance of chitosan-based nano-pesticides for sustainable control of plumeria rust. Zhou Y; Wu J; Zhou J; Lin S; Cheng D Int J Biol Macromol; 2022 Dec; 222(Pt A):188-197. PubMed ID: 36150567 [TBL] [Abstract][Full Text] [Related]
58. Surfactant effects on environmental behavior of pesticides. Katagi T Rev Environ Contam Toxicol; 2008; 194():71-177. PubMed ID: 18069647 [TBL] [Abstract][Full Text] [Related]
59. Advances in Biopolymeric Nanopesticides: A New Eco-Friendly/Eco-Protective Perspective in Precision Agriculture. Kumar R; Kumar N; Rajput VD; Mandzhieva S; Minkina T; Saharan BS; Kumar D; Sadh PK; Duhan JS Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432250 [TBL] [Abstract][Full Text] [Related]
60. Biodegradable and Light-Responsive Polymeric Nanoparticles for Environmentally Safe Herbicide Delivery. Shan P; Lu Y; Lu W; Yin X; Liu H; Li D; Lian X; Wang W; Li Z; Li Z ACS Appl Mater Interfaces; 2022 Sep; 14(38):43759-43770. PubMed ID: 36111970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]