These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 29439500)
21. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Alsaade FW; Aldhyani THH; Al-Adhaileh MH Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044 [TBL] [Abstract][Full Text] [Related]
22. Melanoma segmentation using deep learning with test-time augmentations and conditional random fields. Ashraf H; Waris A; Ghafoor MF; Gilani SO; Niazi IK Sci Rep; 2022 Mar; 12(1):3948. PubMed ID: 35273282 [TBL] [Abstract][Full Text] [Related]
23. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance. Yuan Y; Chao M; Lo YC IEEE Trans Med Imaging; 2017 Sep; 36(9):1876-1886. PubMed ID: 28436853 [TBL] [Abstract][Full Text] [Related]
24. DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images. Nasiri S; Helsper J; Jung M; Fathi M BMC Bioinformatics; 2020 Mar; 21(Suppl 2):84. PubMed ID: 32164530 [TBL] [Abstract][Full Text] [Related]
25. A Novel Multi-Task Learning Network Based on Melanoma Segmentation and Classification with Skin Lesion Images. Alenezi F; Armghan A; Polat K Diagnostics (Basel); 2023 Jan; 13(2):. PubMed ID: 36673072 [TBL] [Abstract][Full Text] [Related]
26. HMA-Net: A deep U-shaped network combined with HarDNet and multi-attention mechanism for medical image segmentation. Liu Q; Han Z; Liu Z; Zhang J Med Phys; 2023 Mar; 50(3):1635-1646. PubMed ID: 36303466 [TBL] [Abstract][Full Text] [Related]
27. Refined Residual Deep Convolutional Network for Skin Lesion Classification. Hosny KM; Kassem MA J Digit Imaging; 2022 Apr; 35(2):258-280. PubMed ID: 35018536 [TBL] [Abstract][Full Text] [Related]
28. Melanoma recognition in dermoscopy images using lesion's peripheral region information. Tajeddin NZ; Asl BM Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849 [TBL] [Abstract][Full Text] [Related]
29. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Nida N; Irtaza A; Javed A; Yousaf MH; Mahmood MT Int J Med Inform; 2019 Apr; 124():37-48. PubMed ID: 30784425 [TBL] [Abstract][Full Text] [Related]
30. Attention Residual Learning for Skin Lesion Classification. Zhang J; Xie Y; Xia Y; Shen C IEEE Trans Med Imaging; 2019 Sep; 38(9):2092-2103. PubMed ID: 30668469 [TBL] [Abstract][Full Text] [Related]
31. Learning from dermoscopic images in association with clinical metadata for skin lesion segmentation and classification. Dong C; Dai D; Zhang Y; Zhang C; Li Z; Xu S Comput Biol Med; 2023 Jan; 152():106321. PubMed ID: 36463792 [TBL] [Abstract][Full Text] [Related]
32. A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation and Classification. Xie Y; Zhang J; Xia Y; Shen C IEEE Trans Med Imaging; 2020 Jul; 39(7):2482-2493. PubMed ID: 32070946 [TBL] [Abstract][Full Text] [Related]
33. Multi-level Attentive Skin Lesion Learning for Melanoma Classification. Wang X; Huang W; Lu Z; Huang S Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3924-3927. PubMed ID: 34892090 [TBL] [Abstract][Full Text] [Related]
34. Two-Stage Deep Neural Network Ding J; Song J; Li J; Tang J; Guo F Front Bioeng Biotechnol; 2021; 9():758495. PubMed ID: 35118054 [TBL] [Abstract][Full Text] [Related]
35. A comparative study of deep learning architectures on melanoma detection. Hosseinzadeh Kassani S; Hosseinzadeh Kassani P Tissue Cell; 2019 Jun; 58():76-83. PubMed ID: 31133249 [TBL] [Abstract][Full Text] [Related]
36. Automatic skin lesion classification using a new densely connected convolutional network with an SF module. Shan P; Fu C; Dai L; Jia T; Tie M; Liu J Med Biol Eng Comput; 2022 Aug; 60(8):2173-2188. PubMed ID: 35639329 [TBL] [Abstract][Full Text] [Related]
37. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. Chatterjee S; Dey D; Munshi S Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550 [TBL] [Abstract][Full Text] [Related]
38. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C; Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421 [TBL] [Abstract][Full Text] [Related]
39. Encoding Deep Residual Features into Fisher Vector for Skin Lesion Classification. Hu H; Chen Z; Xia Y Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1843-1846. PubMed ID: 36086502 [TBL] [Abstract][Full Text] [Related]
40. A GAN-based image synthesis method for skin lesion classification. Qin Z; Liu Z; Zhu P; Xue Y Comput Methods Programs Biomed; 2020 Oct; 195():105568. PubMed ID: 32526536 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]