These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
498 related articles for article (PubMed ID: 29439504)
1. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact. Khanna S; Santos MJ; Ustin SL; Shapiro K; Haverkamp PJ; Lay M Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439504 [TBL] [Abstract][Full Text] [Related]
2. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data. Khanna S; Santos MJ; Ustin SL; Koltunov A; Kokaly RF; Roberts DA PLoS One; 2013; 8(11):e78989. PubMed ID: 24223872 [TBL] [Abstract][Full Text] [Related]
3. Meta-analysis of salt marsh vegetation impacts and recovery: a synthesis following the Deepwater Horizon oil spill. Zengel S; Weaver J; Mendelssohn IA; Graham SA; Lin Q; Hester MW; Willis JM; Silliman BR; Fleeger JW; McClenachan G; Rabalais NN; Turner RE; Hughes AR; Cebrian J; Deis DR; Rutherford N; Roberts BJ Ecol Appl; 2022 Jan; 32(1):e02489. PubMed ID: 34741358 [TBL] [Abstract][Full Text] [Related]
4. Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of coastal salt marshes in the northern Gulf of Mexico. Lin Q; Mendelssohn IA Environ Sci Technol; 2012 Apr; 46(7):3737-43. PubMed ID: 22369124 [TBL] [Abstract][Full Text] [Related]
5. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors. Sun S; Hu C; Feng L; Swayze GA; Holmes J; Graettinger G; MacDonald I; Garcia O; Leifer I Mar Pollut Bull; 2016 Feb; 103(1-2):276-285. PubMed ID: 26725867 [TBL] [Abstract][Full Text] [Related]
6. Shoreline oiling from the Deepwater Horizon oil spill. Nixon Z; Zengel S; Baker M; Steinhoff M; Fricano G; Rouhani S; Michel J Mar Pollut Bull; 2016 Jun; 107(1):170-178. PubMed ID: 27098990 [TBL] [Abstract][Full Text] [Related]
7. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery. Zengel S; Bernik BM; Rutherford N; Nixon Z; Michel J PLoS One; 2015; 10(7):e0132324. PubMed ID: 26200349 [TBL] [Abstract][Full Text] [Related]
8. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods. Ozigis MS; Kaduk JD; Jarvis CH; da Conceição Bispo P; Balzter H Environ Pollut; 2020 Jan; 256():113360. PubMed ID: 31672372 [TBL] [Abstract][Full Text] [Related]
9. Macroinfauna responses and recovery trajectories after an oil spill differ from those following saltmarsh restoration. Fleeger JW; Johnson DS; Zengel S; Mendelssohn IA; Deis DR; Graham SA; Lin Q; Christman MC; Riggio MR; Pant M Mar Environ Res; 2020 Mar; 155():104881. PubMed ID: 32072985 [TBL] [Abstract][Full Text] [Related]
10. Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors. Arslan N Environ Monit Assess; 2018 Oct; 190(11):637. PubMed ID: 30338396 [TBL] [Abstract][Full Text] [Related]
11. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill. Engel AS; Liu C; Paterson AT; Anderson LC; Turner RE; Overton EB Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778895 [TBL] [Abstract][Full Text] [Related]
12. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability. Lin Q; Mendelssohn IA; Graham SA; Hou A; Fleeger JW; Deis DR Sci Total Environ; 2016 Jul; 557-558():369-77. PubMed ID: 27016685 [TBL] [Abstract][Full Text] [Related]
13. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria. Ozigis MS; Kaduk JD; Jarvis CH Environ Sci Pollut Res Int; 2019 Feb; 26(4):3621-3635. PubMed ID: 30535661 [TBL] [Abstract][Full Text] [Related]
14. Recovery of horse fly populations in Louisiana marshes following the Deepwater Horizon oil spill. Husseneder C; Park JS; Foil LD Sci Rep; 2018 Sep; 8(1):13777. PubMed ID: 30213957 [TBL] [Abstract][Full Text] [Related]
15. A review of Gulf of Mexico coastal marsh erosion studies following the 2010 Deepwater Horizon oil spill and comparison to over 4 years of shoreline loss data from Fall 2010 to Summer 2015. Challenger GE; Gmur S; Taylor E Mar Pollut Bull; 2021 Mar; 164():111983. PubMed ID: 33513545 [TBL] [Abstract][Full Text] [Related]
16. Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana. Hester MW; Willis JM; Rouhani S; Steinhoff MA; Baker MC Environ Pollut; 2016 Sep; 216():361-370. PubMed ID: 27299994 [TBL] [Abstract][Full Text] [Related]
17. Effects of Deepwater Horizon Oil on the Movement and Survival of Marsh Periwinkle Snails (Littoraria irrorata). Garner TR; Hart MA; Sweet LE; Bagheri HTJ; Morris J; Stoeckel JA; Roberts AP Environ Sci Technol; 2017 Aug; 51(15):8757-8762. PubMed ID: 28661662 [TBL] [Abstract][Full Text] [Related]
18. Salt marsh denitrification is impacted by oiling intensity six years after the Deepwater Horizon oil spill. Tatariw C; Flournoy N; Kleinhuizen AA; Tollette D; Overton EB; Sobecky PA; Mortazavi B Environ Pollut; 2018 Dec; 243(Pt B):1606-1614. PubMed ID: 30296756 [TBL] [Abstract][Full Text] [Related]
19. Field assessment of the impacts of Deepwater Horizon oiling on coastal marsh vegetation of Mississippi and Alabama. Willis JM; Hester MW; Rouhani S; Steinhoff MA; Baker MC Environ Toxicol Chem; 2016 Nov; 35(11):2791-2797. PubMed ID: 27061832 [TBL] [Abstract][Full Text] [Related]
20. Application of C-band sentinel-1A SAR data as proxies for detecting oil spills of Chennai, East Coast of India. Dasari K; Anjaneyulu L; Nadimikeri J Mar Pollut Bull; 2022 Jan; 174():113182. PubMed ID: 34844147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]