BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 29439504)

  • 1. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact.
    Khanna S; Santos MJ; Ustin SL; Shapiro K; Haverkamp PJ; Lay M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data.
    Khanna S; Santos MJ; Ustin SL; Koltunov A; Kokaly RF; Roberts DA
    PLoS One; 2013; 8(11):e78989. PubMed ID: 24223872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta-analysis of salt marsh vegetation impacts and recovery: a synthesis following the Deepwater Horizon oil spill.
    Zengel S; Weaver J; Mendelssohn IA; Graham SA; Lin Q; Hester MW; Willis JM; Silliman BR; Fleeger JW; McClenachan G; Rabalais NN; Turner RE; Hughes AR; Cebrian J; Deis DR; Rutherford N; Roberts BJ
    Ecol Appl; 2022 Jan; 32(1):e02489. PubMed ID: 34741358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of coastal salt marshes in the northern Gulf of Mexico.
    Lin Q; Mendelssohn IA
    Environ Sci Technol; 2012 Apr; 46(7):3737-43. PubMed ID: 22369124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors.
    Sun S; Hu C; Feng L; Swayze GA; Holmes J; Graettinger G; MacDonald I; Garcia O; Leifer I
    Mar Pollut Bull; 2016 Feb; 103(1-2):276-285. PubMed ID: 26725867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shoreline oiling from the Deepwater Horizon oil spill.
    Nixon Z; Zengel S; Baker M; Steinhoff M; Fricano G; Rouhani S; Michel J
    Mar Pollut Bull; 2016 Jun; 107(1):170-178. PubMed ID: 27098990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.
    Zengel S; Bernik BM; Rutherford N; Nixon Z; Michel J
    PLoS One; 2015; 10(7):e0132324. PubMed ID: 26200349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods.
    Ozigis MS; Kaduk JD; Jarvis CH; da Conceição Bispo P; Balzter H
    Environ Pollut; 2020 Jan; 256():113360. PubMed ID: 31672372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroinfauna responses and recovery trajectories after an oil spill differ from those following saltmarsh restoration.
    Fleeger JW; Johnson DS; Zengel S; Mendelssohn IA; Deis DR; Graham SA; Lin Q; Christman MC; Riggio MR; Pant M
    Mar Environ Res; 2020 Mar; 155():104881. PubMed ID: 32072985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors.
    Arslan N
    Environ Monit Assess; 2018 Oct; 190(11):637. PubMed ID: 30338396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill.
    Engel AS; Liu C; Paterson AT; Anderson LC; Turner RE; Overton EB
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.
    Lin Q; Mendelssohn IA; Graham SA; Hou A; Fleeger JW; Deis DR
    Sci Total Environ; 2016 Jul; 557-558():369-77. PubMed ID: 27016685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria.
    Ozigis MS; Kaduk JD; Jarvis CH
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3621-3635. PubMed ID: 30535661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of horse fly populations in Louisiana marshes following the Deepwater Horizon oil spill.
    Husseneder C; Park JS; Foil LD
    Sci Rep; 2018 Sep; 8(1):13777. PubMed ID: 30213957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of Gulf of Mexico coastal marsh erosion studies following the 2010 Deepwater Horizon oil spill and comparison to over 4 years of shoreline loss data from Fall 2010 to Summer 2015.
    Challenger GE; Gmur S; Taylor E
    Mar Pollut Bull; 2021 Mar; 164():111983. PubMed ID: 33513545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana.
    Hester MW; Willis JM; Rouhani S; Steinhoff MA; Baker MC
    Environ Pollut; 2016 Sep; 216():361-370. PubMed ID: 27299994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Deepwater Horizon Oil on the Movement and Survival of Marsh Periwinkle Snails (Littoraria irrorata).
    Garner TR; Hart MA; Sweet LE; Bagheri HTJ; Morris J; Stoeckel JA; Roberts AP
    Environ Sci Technol; 2017 Aug; 51(15):8757-8762. PubMed ID: 28661662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt marsh denitrification is impacted by oiling intensity six years after the Deepwater Horizon oil spill.
    Tatariw C; Flournoy N; Kleinhuizen AA; Tollette D; Overton EB; Sobecky PA; Mortazavi B
    Environ Pollut; 2018 Dec; 243(Pt B):1606-1614. PubMed ID: 30296756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field assessment of the impacts of Deepwater Horizon oiling on coastal marsh vegetation of Mississippi and Alabama.
    Willis JM; Hester MW; Rouhani S; Steinhoff MA; Baker MC
    Environ Toxicol Chem; 2016 Nov; 35(11):2791-2797. PubMed ID: 27061832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of C-band sentinel-1A SAR data as proxies for detecting oil spills of Chennai, East Coast of India.
    Dasari K; Anjaneyulu L; Nadimikeri J
    Mar Pollut Bull; 2022 Jan; 174():113182. PubMed ID: 34844147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.