These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 29439680)
1. Microtiter miniature shaken bioreactor system as a scale-down model for process development of production of therapeutic alpha-interferon2b by recombinant Escherichia coli. Tan JS; Abbasiliasi S; Kadkhodaei S; Tam YJ; Tang TK; Lee YY; Ariff AB BMC Microbiol; 2018 Jan; 18(1):3. PubMed ID: 29439680 [TBL] [Abstract][Full Text] [Related]
2. Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations. Kensy F; Engelbrecht C; Büchs J Microb Cell Fact; 2009 Dec; 8():68. PubMed ID: 20028556 [TBL] [Abstract][Full Text] [Related]
3. An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Rohe P; Venkanna D; Kleine B; Freudl R; Oldiges M Microb Cell Fact; 2012 Oct; 11():144. PubMed ID: 23113930 [TBL] [Abstract][Full Text] [Related]
4. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up. Gill NK; Appleton M; Baganz F; Lye GJ Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769 [TBL] [Abstract][Full Text] [Related]
5. An automated microscale platform for evaluation and optimization of oxidative bioconversion processes. Baboo JZ; Galman JL; Lye GJ; Ward JM; Hailes HC; Micheletti M Biotechnol Prog; 2012; 28(2):392-405. PubMed ID: 22223589 [TBL] [Abstract][Full Text] [Related]
6. Replication methods and tools in high-throughput cultivation processes - recognizing potential variations of growth and product formation by on-line monitoring. Huber R; Palmen TG; Ryk N; Hillmer AK; Luft K; Kensy F; Büchs J BMC Biotechnol; 2010 Mar; 10():22. PubMed ID: 20233443 [TBL] [Abstract][Full Text] [Related]
7. Optimizing recombinant protein expression via automated induction profiling in microtiter plates at different temperatures. Mühlmann M; Forsten E; Noack S; Büchs J Microb Cell Fact; 2017 Nov; 16(1):220. PubMed ID: 29183374 [TBL] [Abstract][Full Text] [Related]
8. Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: acid metabolites in shake flasks and stirred bioreactors. Dahlgren ME; Powell AL; Greasham RL; George HA Biotechnol Prog; 1993; 9(6):580-6. PubMed ID: 7764346 [TBL] [Abstract][Full Text] [Related]
9. Effects of feeding and induction strategy on the production of BmR1 antigen in recombinant E. coli. Norsyahida A; Rahmah N; Ahmad RM Lett Appl Microbiol; 2009 Nov; 49(5):544-50. PubMed ID: 19832937 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the efficiency of recombinant Escherichia coli strain cultivation in a gas-vortex bioreactor. Savelyeva AV; Nemudraya AA; Podgornyi VF; Laburkina NV; Ramazanov YA; Repkov AP; Kuligina EV; Richter VA Biotechnol Appl Biochem; 2017 Sep; 64(5):712-718. PubMed ID: 27506869 [TBL] [Abstract][Full Text] [Related]
12. Economical parallel protein expression screening and scale-up in Escherichia coli. Brodsky O; Cronin CN J Struct Funct Genomics; 2006 Jun; 7(2):101-8. PubMed ID: 17187226 [TBL] [Abstract][Full Text] [Related]
13. Characterization and feasibility of a miniaturized stirred tank bioreactor to perform E. coli high cell density fed-batch fermentations. Ali S; Perez-Pardo MA; Aucamp JP; Craig A; Bracewell DG; Baganz F Biotechnol Prog; 2012; 28(1):66-75. PubMed ID: 21954170 [TBL] [Abstract][Full Text] [Related]
14. Multiple microfermentor battery: a versatile tool for use with automated parallel cultures of microorganisms producing recombinant proteins and for optimization of cultivation protocols. Frachon E; Bondet V; Munier-Lehmann H; Bellalou J Appl Environ Microbiol; 2006 Aug; 72(8):5225-31. PubMed ID: 16885269 [TBL] [Abstract][Full Text] [Related]
15. Growth and recombinant protein expression with Escherichia coli in different batch cultivation media. Hortsch R; Weuster-Botz D Appl Microbiol Biotechnol; 2011 Apr; 90(1):69-76. PubMed ID: 21181153 [TBL] [Abstract][Full Text] [Related]
16. Study on the production of human interferon alpha-2b expressed in Escherichia coli. Yan Y; Wang X; Wu A; Sun Y Chin J Biotechnol; 1996; 12(1):25-9. PubMed ID: 8877111 [TBL] [Abstract][Full Text] [Related]
18. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Zhou Y; Lu Z; Wang X; Selvaraj JN; Zhang G Appl Microbiol Biotechnol; 2018 Feb; 102(4):1545-1556. PubMed ID: 29270732 [TBL] [Abstract][Full Text] [Related]
19. Optimizing host cell physiology and stress avoidance for the production of recombinant human tumour necrosis factor α in Escherichia coli. Selas Castiñeiras T; Williams SG; Hitchcock A; Cole JA; Smith DC; Overton TW Microbiology (Reading); 2018 Apr; 164(4):440-452. PubMed ID: 29458685 [TBL] [Abstract][Full Text] [Related]
20. Establishing a Fed-Batch Process for Protease Expression with Bacillus licheniformis in Polymer-Based Controlled-Release Microtiter Plates. Habicher T; Rauls EKA; Egidi F; Keil T; Klein T; Daub A; Büchs J Biotechnol J; 2020 Feb; 15(2):e1900088. PubMed ID: 31471944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]