These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 29439861)

  • 41. Co-overexpression of Mgat1 and Mgat4 in CHO cells for production of highly sialylated albumin-erythropoietin.
    Cha HM; Lim JH; Yeon JH; Hwang JM; Kim DI
    Enzyme Microb Technol; 2017 Aug; 103():53-58. PubMed ID: 28554385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced sialylation of a human chimeric IgG1 variant produced in human and rodent cell lines.
    Mimura Y; Kelly RM; Unwin L; Albrecht S; Jefferis R; Goodall M; Mizukami Y; Mimura-Kimura Y; Matsumoto T; Ueoka H; Rudd PM
    J Immunol Methods; 2016 Jan; 428():30-6. PubMed ID: 26627984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insights into the loss of protein sialylation in an fc-fusion protein-producing CHO cell bioprocess.
    Chen X; Liu X; Xiao Z; Liu J; Zhao L; Tan WS; Fan L
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):4753-4765. PubMed ID: 31049620
    [TBL] [Abstract][Full Text] [Related]  

  • 44. N-glycan structures and N-glycosylation sites of mouse soluble intercellular adhesion molecule-1 revealed by MALDI-TOF and FTICR mass spectrometry.
    Otto VI; Damoc E; Cueni LN; Schürpf T; Frei R; Ali S; Callewaert N; Moise A; Leary JA; Folkers G; Przybylski M
    Glycobiology; 2006 Nov; 16(11):1033-44. PubMed ID: 16877748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of mild-thiol reducing agents and alpha2,3-sialyltransferase expression on secretion and sialylation of recombinant EPO in CHO cells.
    Chang KH; Jeong YT; Kwak CY; Choi O; Kim JH
    J Microbiol Biotechnol; 2013 May; 23(5):699-706. PubMed ID: 23648861
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering host cell lines to reduce terminal sialylation of secreted antibodies.
    Naso MF; Tam SH; Scallon BJ; Raju TS
    MAbs; 2010; 2(5):519-27. PubMed ID: 20716959
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stable expression of a human-like sialylated recombinant thyrotropin in a Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase.
    Damiani R; Oliveira JE; Vorauer-Uhl K; Peroni CN; Vianna EG; Bartolini P; Ribela MT
    Protein Expr Purif; 2009 Sep; 67(1):7-14. PubMed ID: 19366632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The impact of sialylation linkage-type on the pharmacokinetics of recombinant butyrylcholinesterases.
    Chung CY; Wang Q; Yang S; Chough S; Seo Y; Cipollo JF; Balthasar JP; Betenbaugh MJ
    Biotechnol Bioeng; 2020 Jan; 117(1):157-166. PubMed ID: 31544955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of sialylation on humanized IgG-like bispecific antibody by overexpression of α2,6-sialyltransferase derived from Chinese hamster ovary cells.
    Onitsuka M; Kim WD; Ozaki H; Kawaguchi A; Honda K; Kajiura H; Fujiyama K; Asano R; Kumagai I; Ohtake H; Omasa T
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):69-80. PubMed ID: 22205442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells.
    Yin B; Wang Q; Chung CY; Ren X; Bhattacharya R; Yarema KJ; Betenbaugh MJ
    Biotechnol Bioeng; 2018 Jun; 115(6):1531-1541. PubMed ID: 29427449
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genes modulated by expression of GD3 synthase in Chinese hamster ovary cells. Evidence that the Tis21 gene is involved in the induction of GD3 9-O-acetylation.
    Satake H; Chen HY; Varki A
    J Biol Chem; 2003 Mar; 278(10):7942-8. PubMed ID: 12493756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increased alpha2,6 sialylation of N-glycans in a transgenic mouse model of hepatocellular carcinoma.
    Pousset D; Piller V; Bureaud N; Monsigny M; Piller F
    Cancer Res; 1997 Oct; 57(19):4249-56. PubMed ID: 9331085
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolism of vertebrate amino sugars with N-glycolyl groups: incorporation of N-glycolylhexosamines into mammalian glycans by feeding N-glycolylgalactosamine.
    Bergfeld AK; Pearce OM; Diaz SL; Lawrence R; Vocadlo DJ; Choudhury B; Esko JD; Varki A
    J Biol Chem; 2012 Aug; 287(34):28898-916. PubMed ID: 22692203
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering of coordinated up- and down-regulation of two glycosyltransferases of the O-glycosylation pathway in Chinese hamster ovary (CHO) cells.
    Prati EG; Matasci M; Suter TB; Dinter A; Sburlati AR; Bailey JE
    Biotechnol Bioeng; 2002 Sep; 79(5):580-5. PubMed ID: 12209829
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification and characterization of recombinant human thyrotropin (TSH) isoforms produced by Chinese hamster ovary cells: the role of sialylation and sulfation in TSH bioactivity.
    Szkudlinski MW; Thotakura NR; Bucci I; Joshi LR; Tsai A; East-Palmer J; Shiloach J; Weintraub BD
    Endocrinology; 1993 Oct; 133(4):1490-503. PubMed ID: 8404588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anti-inflammatory IgG production requires functional P1 promoter in β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1) gene.
    Jones MB; Nasirikenari M; Lugade AA; Thanavala Y; Lau JT
    J Biol Chem; 2012 May; 287(19):15365-70. PubMed ID: 22427662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of Fc N-glycan sialylation on IgG structure.
    Zhang Z; Shah B; Richardson J
    MAbs; 2019; 11(8):1381-1390. PubMed ID: 31411531
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms.
    Gawlitzek M; Ryll T; Lofgren J; Sliwkowski MB
    Biotechnol Bioeng; 2000 Jun; 68(6):637-46. PubMed ID: 10799988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The first committed step in the biosynthesis of sialic acid by Escherichia coli K1 does not involve a phosphorylated N-acetylmannosamine intermediate.
    Ringenberg MA; Steenbergen SM; Vimr ER
    Mol Microbiol; 2003 Nov; 50(3):961-75. PubMed ID: 14617154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glycoengineering of Esterase Activity through Metabolic Flux-Based Modulation of Sialic Acid.
    Mathew MP; Tan E; Labonte JW; Shah S; Saeui CT; Liu L; Bhattacharya R; Bovonratwet P; Gray JJ; Yarema KJ
    Chembiochem; 2017 Jul; 18(13):1204-1215. PubMed ID: 28218815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.