BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29439955)

  • 1. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia.
    Wierz M; Pierson S; Guyonnet L; Viry E; Lequeux A; Oudin A; Niclou SP; Ollert M; Berchem G; Janji B; Guérin C; Paggetti J; Moussay E
    Blood; 2018 Apr; 131(14):1617-1621. PubMed ID: 29439955
    [No Abstract]   [Full Text] [Related]  

  • 2. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia.
    Shapiro M; Herishanu Y; Katz BZ; Dezorella N; Sun C; Kay S; Polliack A; Avivi I; Wiestner A; Perry C
    Haematologica; 2017 May; 102(5):874-882. PubMed ID: 28154084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model.
    Huang RY; Eppolito C; Lele S; Shrikant P; Matsuzaki J; Odunsi K
    Oncotarget; 2015 Sep; 6(29):27359-77. PubMed ID: 26318293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for the Analysis of the Tumor Microenvironment by Mass Cytometry: Application to Chronic Lymphocytic Leukemia.
    Gonder S; Fernandez Botana I; Wierz M; Pagano G; Gargiulo E; Cosma A; Moussay E; Paggetti J; Largeot A
    Front Immunol; 2020; 11():578176. PubMed ID: 33193376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of immune checkpoints in Richter syndrome identifies LAG3 as a potential therapeutic target.
    Gould C; Lickiss J; Kankanige Y; Yerneni S; Lade S; Gandhi MK; Chin C; Yannakou CK; Villa D; Slack GW; Markham JF; Tam CS; Nelson N; Seymour JF; Dickinson M; Neeson PJ; Westerman D; Blombery P
    Br J Haematol; 2021 Oct; 195(1):113-118. PubMed ID: 34426978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LAG3 (CD223) as a cancer immunotherapy target.
    Andrews LP; Marciscano AE; Drake CG; Vignali DA
    Immunol Rev; 2017 Mar; 276(1):80-96. PubMed ID: 28258692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8
    Kim HD; Song GW; Park S; Jung MK; Kim MH; Kang HJ; Yoo C; Yi K; Kim KH; Eo S; Moon DB; Hong SM; Ju YS; Shin EC; Hwang S; Park SH
    Gastroenterology; 2018 Dec; 155(6):1936-1950.e17. PubMed ID: 30145359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the immune checkpoint receptors PD-1, LAG3, and TIM3 in the immune context of stage II and III gastric cancer by using single and chromogenic multiplex immunohistochemistry.
    Park Y; Seo AN; Koh J; Nam SK; Kwak Y; Ahn SH; Park DJ; Kim HH; Lee HS
    Oncoimmunology; 2021; 10(1):1954761. PubMed ID: 34367732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p66Shc deficiency in the Eμ-TCL1 mouse model of chronic lymphocytic leukemia enhances leukemogenesis by altering the chemokine receptor landscape.
    Patrussi L; Capitani N; Ulivieri C; Manganaro N; Granai M; Cattaneo F; Kabanova A; Mundo L; Gobessi S; Frezzato F; Visentin A; Finetti F; Pelicci PG; D'Elios MM; Trentin L; Semenzato G; Leoncini L; Efremov DG; Baldari CT
    Haematologica; 2019 Oct; 104(10):2040-2052. PubMed ID: 30819907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy.
    Qi Y; Chen L; Liu Q; Kong X; Fang Y; Wang J
    Front Immunol; 2020; 11():563258. PubMed ID: 33488573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical blockade of PD1 and LAG3--potential mechanisms of action.
    Nguyen LT; Ohashi PS
    Nat Rev Immunol; 2015 Jan; 15(1):45-56. PubMed ID: 25534622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PD-1 and LAG-3 Checkpoint Blockade: Potential Avenues for Therapy in B-Cell Lymphoma.
    Tobin JWD; Bednarska K; Campbell A; Keane C
    Cells; 2021 May; 10(5):. PubMed ID: 34068762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding.
    Andrews LP; Somasundaram A; Moskovitz JM; Szymczak-Workman AL; Liu C; Cillo AR; Lin H; Normolle DP; Moynihan KD; Taniuchi I; Irvine DJ; Kirkwood JM; Lipson EJ; Ferris RL; Bruno TC; Workman CJ; Vignali DAA
    Sci Immunol; 2020 Jul; 5(49):. PubMed ID: 32680952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex Immuno-Liquid Chromatography-Mass Spectrometry-Parallel Reaction Monitoring (LC-MS-PRM) Quantitation of CD8A, CD4, LAG3, PD1, PD-L1, and PD-L2 in Frozen Human Tissues.
    Zhang Q; Salzler R; Dore A; Yang J; Ma D; Olson WC; Liu Y
    J Proteome Res; 2018 Nov; 17(11):3932-3940. PubMed ID: 30277784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice.
    Foy SP; Sennino B; dela Cruz T; Cote JJ; Gordon EJ; Kemp F; Xavier V; Franzusoff A; Rountree RB; Mandl SJ
    PLoS One; 2016; 11(2):e0150084. PubMed ID: 26910562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of engineered cell-based assays mediating LAG3 and PD1 immune suppression enables potency measurement of blocking antibodies and assessment of signal transduction.
    Bhagwat B; Cherwinski H; Sathe M; Seghezzi W; McClanahan TK; de Waal Malefyt R; Willingham A
    J Immunol Methods; 2018 May; 456():7-14. PubMed ID: 29427592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival.
    Tu L; Guan R; Yang H; Zhou Y; Hong W; Ma L; Zhao G; Yu M
    Int J Cancer; 2020 Jul; 147(2):423-439. PubMed ID: 31721169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multi-specific V
    Edwards CJ; Sette A; Cox C; Di Fiore B; Wyre C; Sydoruk D; Yadin D; Hayes P; Stelter S; Bartlett PD; Zuazo M; Garcia-Granda MJ; Benedetti G; Fiaska S; Birkett NR; Teng Y; Enever C; Arasanz H; Bocanegra A; Chocarro L; Fernandez G; Vera R; Archer B; Osuch I; Lewandowska M; Surani YM; Kochan G; Escors D; Legg J; Pierce AJ
    Br J Cancer; 2022 May; 126(8):1168-1177. PubMed ID: 34969998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
    Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J
    Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia.
    Brusa D; Serra S; Coscia M; Rossi D; D'Arena G; Laurenti L; Jaksic O; Fedele G; Inghirami G; Gaidano G; Malavasi F; Deaglio S
    Haematologica; 2013 Jun; 98(6):953-63. PubMed ID: 23300177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.