BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 29439983)

  • 1. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe
    Shah F; Mali T; Lundell TK
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition of spruce wood and release of volatile organic compounds depend on decay type, fungal interactions and enzyme production patterns.
    Mali T; Mäki M; Hellén H; Heinonsalo J; Bäck J; Lundell T
    FEMS Microbiol Ecol; 2019 Sep; 95(9):. PubMed ID: 31494677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola.
    Wu B; Gaskell J; Held BW; Toapanta C; Vuong T; Ahrendt S; Lipzen A; Zhang J; Schilling JS; Master E; Grigoriev IV; Blanchette RA; Cullen D; Hibbett DS
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes.
    Mali T; Kuuskeri J; Shah F; Lundell TK
    PLoS One; 2017; 12(9):e0185171. PubMed ID: 28953947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions.
    Arantes V; Milagres AM; Filley TR; Goodell B
    J Ind Microbiol Biotechnol; 2011 Apr; 38(4):541-55. PubMed ID: 20711629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme Activity Profiles Produced on Wood and Straw by Four Fungi of Different Decay Strategies.
    Veloz Villavicencio E; Mali T; Mattila HK; Lundell T
    Microorganisms; 2020 Jan; 8(1):. PubMed ID: 31906600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retracted and Republished from: "Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus
    Wu B; Gaskell J; Held BW; Toapanta C; Vuong TV; Ahrendt S; Lipzen A; Zhang J; Schilling JS; Master E; Grigoriev IV; Blanchette RA; Cullen D; Hibbett DS
    Appl Environ Microbiol; 2021 Jul; 87(16):e0032921. PubMed ID: 34313495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi.
    Presley GN; Schilling JS
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative Damage Control during Decay of Wood by Brown Rot Fungus Using Oxygen Radicals.
    Castaño JD; Zhang J; Anderson CE; Schilling JS
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30194102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fungal Secretome Adapted for Stress Enabled a Radical Wood Decay Mechanism.
    Castaño J; Zhang J; Zhou M; Tsai CF; Lee JY; Nicora C; Schilling J
    mBio; 2021 Aug; 12(4):e0204021. PubMed ID: 34399614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems.
    Schilling JS; Tewalt JP; Duncan SM
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):465-75. PubMed ID: 19343340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay.
    Hori C; Gaskell J; Igarashi K; Samejima M; Hibbett D; Henrissat B; Cullen D
    Mycologia; 2013; 105(6):1412-27. PubMed ID: 23935027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence from Serpula lacrymans that 2,5-dimethoxyhydroquinone Is a lignocellulolytic agent of divergent brown rot basidiomycetes.
    Korripally P; Timokhin VI; Houtman CJ; Mozuch MD; Hammel KE
    Appl Environ Microbiol; 2013 Apr; 79(7):2377-83. PubMed ID: 23377930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methionine oxidation of carbohydrate-active enzymes during white-rot wood decay.
    Molinelli L; Drula E; Gaillard J-C; Navarro D; Armengaud J; Berrin J-G; Tron T; Tarrago L
    Appl Environ Microbiol; 2024 Mar; 90(3):e0193123. PubMed ID: 38376171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the efficiency of metal removal from CCA-treated wood using brown rot fungi.
    Kim GH; Choi YS; Kim JJ
    Environ Technol; 2009 Jun; 30(7):673-9. PubMed ID: 19705604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Lignocellulolytic Enzyme Activities on Hardwood and Softwood during Interspecific Interactions of White- and Brown-Rot Fungi.
    Sugano J; Maina N; Wallenius J; Hildén K
    J Fungi (Basel); 2021 Mar; 7(4):. PubMed ID: 33807430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi.
    Presley GN; Panisko E; Purvine SO; Schilling JS
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression.
    Castaño JD; El Khoury IV; Goering J; Evans JE; Zhang J
    Appl Environ Microbiol; 2024 May; 90(5):e0012224. PubMed ID: 38567954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal hydroquinones contribute to brown rot of wood.
    Suzuki MR; Hunt CG; Houtman CJ; Dalebroux ZD; Hammel KE
    Environ Microbiol; 2006 Dec; 8(12):2214-23. PubMed ID: 17107562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta.
    Zhang J; Presley GN; Hammel KE; Ryu JS; Menke JR; Figueroa M; Hu D; Orr G; Schilling JS
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10968-73. PubMed ID: 27621450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.