BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 29440)

  • 1. Studies on calcium uptake by myometrial microsomes with particular reference to the dependence on inorganic phosphate and oxalate.
    Batra S
    Acta Physiol Scand; 1978 Sep; 104(1):68-73. PubMed ID: 29440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some aspects of calcium uptake by human myometrial mitochondria and microsomes relevant to relaxation.
    Batra S
    Acta Physiol Scand; 1982 Jan; 114(1):91-5. PubMed ID: 7136750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-dependent calcium accumulation in brain microsomes. Enhancement by phosphate and oxalate.
    Trotta EE; de Meis L
    Biochim Biophys Acta; 1975 Jun; 394(2):239-47. PubMed ID: 124599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent Ca-uptake by rat vas deferens smooth muscle microsomes: properties of oxalate stimulated and oxalate-independent Ca-uptake.
    Grover AK; Kwan CY
    Arch Int Pharmacodyn Ther; 1984 Jan; 267(1):4-12. PubMed ID: 6721623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxalate-stimulation of ATP-dependent Ca-uptake is diminished during smooth muscle subcellular fractionation.
    Grover AK; Kwan CY
    Life Sci; 1983 Jun; 32(23):2655-60. PubMed ID: 6855461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
    Darby PJ; Kwan CY; Daniel EE
    Can J Physiol Pharmacol; 1996 Feb; 74(2):182-92. PubMed ID: 8723031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitution of phosphate for oxalate in the study of calcium accumulation and release by cardiac microsomal fractions.
    Dunnett J; Nayler WG
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():213-8. PubMed ID: 801572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of calcium transport and binding by rat myometrium plasma membrane subfractions.
    Grover AK; Kwan CY; Crankshaw J; Crankshaw DJ; Garfield RE; Daniel EE
    Am J Physiol; 1980 Sep; 239(3):C66-74. PubMed ID: 6254367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dual action of papaverine on calcium uptake by microsomal fraction isolated from rat uterus.
    Takayanagi I; Koike K; Hisayama T
    Eur J Pharmacol; 1981 Jan; 69(3):367-70. PubMed ID: 7215434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible mechanisms of stimulatory action of papaverine on calcium-uptake by rat uterine microsomal fraction.
    Koike K; Takayanagi I
    Jpn J Pharmacol; 1981 Oct; 31(5):757-62. PubMed ID: 6118454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separate entry pathways for phosphate and oxalate in rat brain microsomes.
    Meng XJ; Timmer RT; Gunn RB; Abercrombie RF
    Am J Physiol Cell Physiol; 2000 Jun; 278(6):C1183-90. PubMed ID: 10837346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible reflection of intracellular calcium binding in the divergent pattern of relaxation in rat and rabbit uterus.
    Batra S; Bengtsson B; Popper LD
    Acta Physiol Scand; 1987 Oct; 131(2):309-14. PubMed ID: 3673623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of sarcolemma and mitochondria in regulating Ca2+ movements in human myometrium.
    Janis RA; Lee EY; Allan J; Daniel EE
    Pflugers Arch; 1976 Sep; 365(2-3):171-6. PubMed ID: 988555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular origin of the oxalate- or inorganic phosphate-stimulated Ca2+ transport by smooth muscle microsomes: revisitation of the old problem by a new approach using saponin.
    Kwan CY
    Biochim Biophys Acta; 1985 Sep; 819(1):148-52. PubMed ID: 2931116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of orthophosphate and oxalate on the cold-induced release of calcium from sarcoplasmic reticulum preparations from rabbit skeletal muscle.
    Newbold RP; Tume RK
    Aust J Biol Sci; 1977 Dec; 30(6):519-26. PubMed ID: 26326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport with glucose-6-phosphatase.
    Benedetti A; Fulceri R; Comporti M
    Biochim Biophys Acta; 1985 Jun; 816(2):267-77. PubMed ID: 2988615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of calcium pump function in back inhibited vesicles by calcium-ATPase ligands.
    Korge P; Campbell KB
    Cardiovasc Res; 1995 Apr; 29(4):512-9. PubMed ID: 7796445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium incorporation by smooth muscle microsomes.
    Godfraind T; Sturbois X; Verbeke N
    Biochim Biophys Acta; 1976 Nov; 455(1):254-68. PubMed ID: 11001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Functional coupling of the calcium pump and glucose 6-phosphatase activity in liver microsomes: preliminary results].
    Benedetti A; Fulceri R; Comporti M
    Boll Soc Ital Biol Sper; 1984 Jul; 60(7):1317-23. PubMed ID: 6089854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of sodium gradient on calcium uptake by plasma membranes of the myometrium].
    Bratkova NF; Kurskii MD; Kosterin SA
    Biokhimiia; 1982 Jun; 47(6):1015-21. PubMed ID: 6810956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.