BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 29440279)

  • 1. Impairment of PPAR
    Chung KW; Lee EK; Lee MK; Oh GT; Yu BP; Chung HY
    J Am Soc Nephrol; 2018 Apr; 29(4):1223-1237. PubMed ID: 29440279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upregulation of KLF14 expression attenuates kidney fibrosis by inducing PPARα-mediated fatty acid oxidation.
    Chen L; Sha ML; Chen FT; Jiang CY; Li D; Xu CL; Pan DS; Xu ZJ; Tang QL; Xia SJ; Sun LH; Fan GJ; Shao Y
    Free Radic Biol Med; 2023 Feb; 195():132-144. PubMed ID: 36584797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PPARα/β Activation Alleviates Age-Associated Renal Fibrosis in Sprague Dawley Rats.
    Chung KW; Ha S; Kim SM; Kim DH; An HJ; Lee EK; Moon HR; Chung HY
    J Gerontol A Biol Sci Med Sci; 2020 Feb; 75(3):452-458. PubMed ID: 31112599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PPARα agonist fenofibrate enhances fatty acid β-oxidation and attenuates polycystic kidney and liver disease in mice.
    Lakhia R; Yheskel M; Flaten A; Quittner-Strom EB; Holland WL; Patel V
    Am J Physiol Renal Physiol; 2018 Jan; 314(1):F122-F131. PubMed ID: 28903946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STAT6 promoting oxalate crystal deposition-induced renal fibrosis by mediating macrophage-to-myofibroblast transition via inhibiting fatty acid oxidation.
    Yuan T; Xia Y; Pan S; Li B; Ye Z; Yan X; Hu W; Li L; Song B; Yu W; Li H; Rao T; Lin F; Zhou X; Cheng F
    Inflamm Res; 2023 Dec; 72(12):2111-2126. PubMed ID: 37924395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin Ameliorates Cisplatin-Induced Renal Tubular Epithelial Cell Damage through PPARα/FAO Regulation.
    Li N; Liu X; Lei Y; Wang B; Li Z
    Chem Res Toxicol; 2022 Sep; 35(9):1503-1511. PubMed ID: 36006825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel PPARα agonist MHY553 alleviates hepatic steatosis by increasing fatty acid oxidation and decreasing inflammation during aging.
    Kim SM; Lee B; An HJ; Kim DH; Park KC; Noh SG; Chung KW; Lee EK; Kim KM; Kim DH; Kim SJ; Chun P; Lee HJ; Moon HR; Chung HY
    Oncotarget; 2017 Jul; 8(28):46273-46285. PubMed ID: 28545035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shen-Shuai-II-Recipe inhibits tubular inflammation by PPARα-mediated fatty acid oxidation to attenuate fibroblast activation in fibrotic kidneys.
    Wang M; Wang L; Zhou L; Xu Y; Wang C
    Phytomedicine; 2024 Apr; 126():155450. PubMed ID: 38368794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STAT6 contributes to renal fibrosis by modulating PPARα-mediated tubular fatty acid oxidation.
    Li J; Yang Y; Li Q; Wei S; Zhou Y; Yu W; Xue L; Zhou L; Shen L; Lu G; Chen L; Tao S
    Cell Death Dis; 2022 Jan; 13(1):66. PubMed ID: 35046382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation.
    Gremlich S; Nolan C; Roduit R; Burcelin R; Peyot ML; Delghingaro-Augusto V; Desvergne B; Michalik L; Prentki M; Wahli W
    Endocrinology; 2005 Jan; 146(1):375-82. PubMed ID: 15459119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis.
    Jao TM; Nangaku M; Wu CH; Sugahara M; Saito H; Maekawa H; Ishimoto Y; Aoe M; Inoue T; Tanaka T; Staels B; Mori K; Inagi R
    Kidney Int; 2019 Mar; 95(3):577-589. PubMed ID: 30639234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPKα2-SIRT1-PPARα signaling pathway.
    Deleye Y; Cotte AK; Hannou SA; Hennuyer N; Bernard L; Derudas B; Caron S; Legry V; Vallez E; Dorchies E; Martin N; Lancel S; Annicotte JS; Bantubungi K; Pourtier A; Raverdy V; Pattou F; Lefebvre P; Abbadie C; Staels B; Haas JT; Paumelle R
    J Biol Chem; 2020 Dec; 295(50):17310-17322. PubMed ID: 33037071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Icariside II prevents kidney fibrosis development in chronic kidney disease by promoting fatty acid oxidation.
    Wang M; Wang J; Wang L; Feng X; Qian Y; Ye C; Wang C
    Phytother Res; 2024 Feb; 38(2):839-855. PubMed ID: 38081477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C3aR Antagonist Alleviates C3a Induced Tubular Profibrotic Phenotype Transition via Restoring PPARα/CPT-1α Mediated Mitochondrial Fatty Acid Oxidation in Renin-Dependent Hypertension.
    Wang C; Wang Z; Xu J; Ma H; Jin K; Xu T; Pan X; Feng X; Zhang W
    Front Biosci (Landmark Ed); 2023 Oct; 28(10):238. PubMed ID: 37919077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twist1 downregulation of PGC-1α decreases fatty acid oxidation in tubular epithelial cells, leading to kidney fibrosis.
    Liu L; Ning X; Wei L; Zhou Y; Zhao L; Ma F; Bai M; Yang X; Wang D; Sun S
    Theranostics; 2022; 12(8):3758-3775. PubMed ID: 35664054
    [No Abstract]   [Full Text] [Related]  

  • 16. Atorvastatin reverses age-related reduction in rat hepatic PPARalpha and HNF-4.
    Sanguino E; Roglans N; Alegret M; Sánchez RM; Vázquez-Carrera M; Laguna JC
    Br J Pharmacol; 2005 Aug; 145(7):853-61. PubMed ID: 15912134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression.
    de Vogel-van den Bosch HM; Bünger M; de Groot PJ; Bosch-Vermeulen H; Hooiveld GJ; Müller M
    BMC Genomics; 2008 May; 9():231. PubMed ID: 18489776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PPARα-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation.
    Gao Q; Jia Y; Yang G; Zhang X; Boddu PC; Petersen B; Narsingam S; Zhu YJ; Thimmapaya B; Kanwar YS; Reddy JK
    Am J Pathol; 2015 May; 185(5):1396-408. PubMed ID: 25773177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulation of miR-181a impairs lipid metabolism by targeting PPARα expression in nonalcoholic fatty liver disease.
    Huang R; Duan X; Liu X; Cao H; Wang Y; Fan J; Wang B
    Biochem Biophys Res Commun; 2019 Jan; 508(4):1252-1258. PubMed ID: 30558790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of PPARα With the Canonic Wnt Pathway in the Regulation of Renal Fibrosis.
    Cheng R; Ding L; He X; Takahashi Y; Ma JX
    Diabetes; 2016 Dec; 65(12):3730-3743. PubMed ID: 27543085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.