These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 29440279)
1. Impairment of PPAR Chung KW; Lee EK; Lee MK; Oh GT; Yu BP; Chung HY J Am Soc Nephrol; 2018 Apr; 29(4):1223-1237. PubMed ID: 29440279 [TBL] [Abstract][Full Text] [Related]
2. Upregulation of KLF14 expression attenuates kidney fibrosis by inducing PPARα-mediated fatty acid oxidation. Chen L; Sha ML; Chen FT; Jiang CY; Li D; Xu CL; Pan DS; Xu ZJ; Tang QL; Xia SJ; Sun LH; Fan GJ; Shao Y Free Radic Biol Med; 2023 Feb; 195():132-144. PubMed ID: 36584797 [TBL] [Abstract][Full Text] [Related]
3. PPARα/β Activation Alleviates Age-Associated Renal Fibrosis in Sprague Dawley Rats. Chung KW; Ha S; Kim SM; Kim DH; An HJ; Lee EK; Moon HR; Chung HY J Gerontol A Biol Sci Med Sci; 2020 Feb; 75(3):452-458. PubMed ID: 31112599 [TBL] [Abstract][Full Text] [Related]
4. Endogenous activation of peroxisome proliferator-activated receptor-α in proximal tubule cells in counteracting phosphate toxicity. Katsuma Y; Matsui I; Matsumoto A; Okushima H; Imai A; Sakaguchi Y; Yamamoto T; Mizui M; Uchinomiya S; Kato H; Ojida A; Takashima S; Inoue K; Isaka Y Am J Physiol Renal Physiol; 2024 Aug; 327(2):F208-F223. PubMed ID: 38870264 [TBL] [Abstract][Full Text] [Related]
5. PPARα agonist fenofibrate enhances fatty acid β-oxidation and attenuates polycystic kidney and liver disease in mice. Lakhia R; Yheskel M; Flaten A; Quittner-Strom EB; Holland WL; Patel V Am J Physiol Renal Physiol; 2018 Jan; 314(1):F122-F131. PubMed ID: 28903946 [TBL] [Abstract][Full Text] [Related]
6. Cannabinoid receptor 2 plays a key role in renal fibrosis through inhibiting lipid metabolism in renal tubular cells. Zhou S; Ling X; Liang Y; Feng Q; Xie C; Li J; Chen Q; Miao J; Zhang M; Li Z; Shen W; Li X; Wu Q; Wang X; Hou FF; Liu Y; Kong Y; Zhou L Metabolism; 2024 Oct; 159():155978. PubMed ID: 39097161 [TBL] [Abstract][Full Text] [Related]
7. STAT6 promoting oxalate crystal deposition-induced renal fibrosis by mediating macrophage-to-myofibroblast transition via inhibiting fatty acid oxidation. Yuan T; Xia Y; Pan S; Li B; Ye Z; Yan X; Hu W; Li L; Song B; Yu W; Li H; Rao T; Lin F; Zhou X; Cheng F Inflamm Res; 2023 Dec; 72(12):2111-2126. PubMed ID: 37924395 [TBL] [Abstract][Full Text] [Related]
8. Melatonin Ameliorates Cisplatin-Induced Renal Tubular Epithelial Cell Damage through PPARα/FAO Regulation. Li N; Liu X; Lei Y; Wang B; Li Z Chem Res Toxicol; 2022 Sep; 35(9):1503-1511. PubMed ID: 36006825 [TBL] [Abstract][Full Text] [Related]
9. Novel PPARα agonist MHY553 alleviates hepatic steatosis by increasing fatty acid oxidation and decreasing inflammation during aging. Kim SM; Lee B; An HJ; Kim DH; Park KC; Noh SG; Chung KW; Lee EK; Kim KM; Kim DH; Kim SJ; Chun P; Lee HJ; Moon HR; Chung HY Oncotarget; 2017 Jul; 8(28):46273-46285. PubMed ID: 28545035 [TBL] [Abstract][Full Text] [Related]
10. Shen-Shuai-II-Recipe inhibits tubular inflammation by PPARα-mediated fatty acid oxidation to attenuate fibroblast activation in fibrotic kidneys. Wang M; Wang L; Zhou L; Xu Y; Wang C Phytomedicine; 2024 Apr; 126():155450. PubMed ID: 38368794 [TBL] [Abstract][Full Text] [Related]
11. STAT6 contributes to renal fibrosis by modulating PPARα-mediated tubular fatty acid oxidation. Li J; Yang Y; Li Q; Wei S; Zhou Y; Yu W; Xue L; Zhou L; Shen L; Lu G; Chen L; Tao S Cell Death Dis; 2022 Jan; 13(1):66. PubMed ID: 35046382 [TBL] [Abstract][Full Text] [Related]
12. Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation. Gremlich S; Nolan C; Roduit R; Burcelin R; Peyot ML; Delghingaro-Augusto V; Desvergne B; Michalik L; Prentki M; Wahli W Endocrinology; 2005 Jan; 146(1):375-82. PubMed ID: 15459119 [TBL] [Abstract][Full Text] [Related]
13. ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis. Jao TM; Nangaku M; Wu CH; Sugahara M; Saito H; Maekawa H; Ishimoto Y; Aoe M; Inoue T; Tanaka T; Staels B; Mori K; Inagi R Kidney Int; 2019 Mar; 95(3):577-589. PubMed ID: 30639234 [TBL] [Abstract][Full Text] [Related]
15. Icariside II prevents kidney fibrosis development in chronic kidney disease by promoting fatty acid oxidation. Wang M; Wang J; Wang L; Feng X; Qian Y; Ye C; Wang C Phytother Res; 2024 Feb; 38(2):839-855. PubMed ID: 38081477 [TBL] [Abstract][Full Text] [Related]
16. C3aR Antagonist Alleviates C3a Induced Tubular Profibrotic Phenotype Transition via Restoring PPARα/CPT-1α Mediated Mitochondrial Fatty Acid Oxidation in Renin-Dependent Hypertension. Wang C; Wang Z; Xu J; Ma H; Jin K; Xu T; Pan X; Feng X; Zhang W Front Biosci (Landmark Ed); 2023 Oct; 28(10):238. PubMed ID: 37919077 [TBL] [Abstract][Full Text] [Related]
17. Twist1 downregulation of PGC-1α decreases fatty acid oxidation in tubular epithelial cells, leading to kidney fibrosis. Liu L; Ning X; Wei L; Zhou Y; Zhao L; Ma F; Bai M; Yang X; Wang D; Sun S Theranostics; 2022; 12(8):3758-3775. PubMed ID: 35664054 [No Abstract] [Full Text] [Related]
18. Atorvastatin reverses age-related reduction in rat hepatic PPARalpha and HNF-4. Sanguino E; Roglans N; Alegret M; Sánchez RM; Vázquez-Carrera M; Laguna JC Br J Pharmacol; 2005 Aug; 145(7):853-61. PubMed ID: 15912134 [TBL] [Abstract][Full Text] [Related]
19. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. de Vogel-van den Bosch HM; Bünger M; de Groot PJ; Bosch-Vermeulen H; Hooiveld GJ; Müller M BMC Genomics; 2008 May; 9():231. PubMed ID: 18489776 [TBL] [Abstract][Full Text] [Related]
20. PPARα-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation. Gao Q; Jia Y; Yang G; Zhang X; Boddu PC; Petersen B; Narsingam S; Zhu YJ; Thimmapaya B; Kanwar YS; Reddy JK Am J Pathol; 2015 May; 185(5):1396-408. PubMed ID: 25773177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]