These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 2944030)
1. Depletion of central beta-endorphin blocks midbrain stimulation produced analgesia in the freely-moving rat. Millan MH; Millan MJ; Herz A Neuroscience; 1986 Jul; 18(3):641-9. PubMed ID: 2944030 [TBL] [Abstract][Full Text] [Related]
2. An analysis of the 'tolerance' which develops to analgetic electrical stimulation of the midbrain periaqueductal grey in freely moving rats. Millan MJ; Członkowski A; Herz A Brain Res; 1987 Dec; 435(1-2):97-111. PubMed ID: 3427472 [TBL] [Abstract][Full Text] [Related]
3. Activation of periaqueductal grey pools of beta-endorphin by analgetic electrical stimulation in freely moving rats. Millan MJ; Członkowski A; Millan MH; Herz A Brain Res; 1987 Mar; 407(1):199-203. PubMed ID: 2884014 [TBL] [Abstract][Full Text] [Related]
4. Evidence that mu-opioid receptors mediate midbrain "stimulation-produced analgesia" in the freely moving rat. Millan MJ; Członkowski A; Herz A Neuroscience; 1987 Sep; 22(3):885-96. PubMed ID: 2825072 [TBL] [Abstract][Full Text] [Related]
5. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation. Fardin V; Oliveras JL; Besson JM Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968 [TBL] [Abstract][Full Text] [Related]
6. Aversive properties of naloxone in non-dependent (naive) rats may involve blockade of central beta-endorphin. Mucha RF; Millan MJ; Herz A Psychopharmacology (Berl); 1985; 86(3):281-5. PubMed ID: 2863837 [TBL] [Abstract][Full Text] [Related]
7. Release into ventriculo-cisternal perfusate of beta-endorphin- and Met-enkephalin-immunoreactivity: effects of electrical stimulation in the arcuate nucleus and periaqueductal gray of the rat. Bach FW; Yaksh TL Brain Res; 1995 Sep; 690(2):167-76. PubMed ID: 8535833 [TBL] [Abstract][Full Text] [Related]
8. Endogenous opioids acting at a medullary mu-opioid receptor contribute to the behavioral antinociception produced by GABA antagonism in the midbrain periaqueductal gray. Roychowdhury SM; Fields HL Neuroscience; 1996 Oct; 74(3):863-72. PubMed ID: 8884782 [TBL] [Abstract][Full Text] [Related]
9. Opiate and serotonergic mechanisms of stimulation-produced analgesia within the periaqueductal gray. Nichols DS; Thorn BE; Berntson GG Brain Res Bull; 1989 Apr; 22(4):717-24. PubMed ID: 2736397 [TBL] [Abstract][Full Text] [Related]
10. Naloxone reversible inhibition of reticular neurones in the rat caudal medulla produced by electrical stimulation of the periaqueductal grey matter. Hill RG; Morris R; Sofroniew MV Pain; 1983 Mar; 15(3):249-63. PubMed ID: 6304597 [TBL] [Abstract][Full Text] [Related]
11. Involvement of arcuate nucleus of hypothalamus in the descending pathway from nucleus accumbens to periaqueductal grey subserving an antinociceptive effect. Yu LC; Han JS Int J Neurosci; 1989 Sep; 48(1-2):71-8. PubMed ID: 2583931 [TBL] [Abstract][Full Text] [Related]
12. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus. Osaki MY; Castellan-Baldan L; Calvo F; Carvalho AD; Felippotti TT; de Oliveira R; Ubiali WA; Paschoalin-Maurin T; Elias-Filho DH; Motta V; da Silva LA; Coimbra NC Brain Res; 2003 Dec; 992(2):179-92. PubMed ID: 14625057 [TBL] [Abstract][Full Text] [Related]
13. The role of the mediobasal arcuate hypothalamus in relation to opioid systems in the control of ingestive behaviour in the rat. Millan MJ; Millan MH; Reid LD; Herz A Brain Res; 1986 Aug; 381(1):29-42. PubMed ID: 2875765 [TBL] [Abstract][Full Text] [Related]
14. Opioid antagonists in the periaqueductal gray inhibit morphine and beta-endorphin analgesia elicited from the amygdala of rats. Pavlovic ZW; Cooper ML; Bodnar RJ Brain Res; 1996 Nov; 741(1-2):13-26. PubMed ID: 9001699 [TBL] [Abstract][Full Text] [Related]
15. Stimulation-produced analgesia in the mouse: evidence for laterality of opioid mediation. Marek P; Yirmiya R; Liebeskind JC Brain Res; 1991 Feb; 541(1):154-6. PubMed ID: 2029617 [TBL] [Abstract][Full Text] [Related]
16. N. raphe magnus lesions disrupt stimulation-produced analgesia from ventral but not dorsal midbrain areas in the rat. Prieto GJ; Cannon JT; Liebeskind JC Brain Res; 1983 Feb; 261(1):53-7. PubMed ID: 6301628 [TBL] [Abstract][Full Text] [Related]
17. Pituitary and brain beta-endorphin in male and female rats: effects of shock and cues associated with shock. Farabollini F; Heinsbroek RP; Facchinetti F; van de Poll NE Pharmacol Biochem Behav; 1991 Apr; 38(4):795-9. PubMed ID: 1871193 [TBL] [Abstract][Full Text] [Related]
18. Alterations of immunoreactive beta-endorphin in the third ventricular fluid in response to electrical stimulation of the human periaqueductal gray matter. Amano K; Kitamura K; Kawamura H; Tanikawa T; Kawabatake H; Notani M; Iseki H; Shiwaku T; Suda T; Demura H Appl Neurophysiol; 1980; 43(3-5):150-8. PubMed ID: 6271055 [TBL] [Abstract][Full Text] [Related]
19. Naloxone blocks the release of opioid peptides in periaqueductal gray and N. accumbens induced by intra-amygdaloid injection of morphine. Ma QP; Han JS Peptides; 1991; 12(6):1235-8. PubMed ID: 1815211 [TBL] [Abstract][Full Text] [Related]
20. The release of beta-endorphin and the neuropeptide-receptor mismatch in the brain. MacMillan SJ; Mark MA; Duggan AW Brain Res; 1998 May; 794(1):127-36. PubMed ID: 9630569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]