BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 29440392)

  • 21. The role of the Synechocystis sp. PCC 6803 homolog of the circadian clock output regulator RpaA in day-night transitions.
    Köbler C; Schultz SJ; Kopp D; Voigt K; Wilde A
    Mol Microbiol; 2018 Dec; 110(5):847-861. PubMed ID: 30216574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CikA Modulates the Effect of KaiA on the Period of the Circadian Oscillation in KaiC Phosphorylation.
    Kaur M; Ng A; Kim P; Diekman C; Kim YI
    J Biol Rhythms; 2019 Apr; 34(2):218-223. PubMed ID: 30755127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic force microscopy analysis of SasA-KaiC complex formation involved in information transfer from the KaiABC clock machinery to the output pathway in cyanobacteria.
    Murakami R; Hokonohara H; Che DC; Kawai T; Matsumoto T; Ishiura M
    Genes Cells; 2018 Apr; 23(4):294-306. PubMed ID: 29527779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The inner workings of an ancient biological clock.
    Fang M; LiWang A; Golden SS; Partch CL
    Trends Biochem Sci; 2024 Mar; 49(3):236-246. PubMed ID: 38185606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Circadian Clock-A Molecular Tool for Survival in Cyanobacteria.
    Kim P; Kaur M; Jang HI; Kim YI
    Life (Basel); 2020 Dec; 10(12):. PubMed ID: 33419320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The reversible function switching of the circadian clock protein KaiA is encoded in its structure.
    Chen Q; Liu S; Yang L; Zhang L; Li J
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2535-2542. PubMed ID: 28844977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro regulation of circadian phosphorylation rhythm of cyanobacterial clock protein KaiC by KaiA and KaiB.
    Nakajima M; Ito H; Kondo T
    FEBS Lett; 2010 Mar; 584(5):898-902. PubMed ID: 20079736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock.
    Boyd JS; Cheng RR; Paddock ML; Sancar C; Morcos F; Golden SS
    J Bacteriol; 2016 Sep; 198(18):2439-47. PubMed ID: 27381914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria.
    Taniguchi Y; Takai N; Katayama M; Kondo T; Oyama T
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):3263-8. PubMed ID: 20133618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator.
    Kim YI; Vinyard DJ; Ananyev GM; Dismukes GC; Golden SS
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17765-9. PubMed ID: 23071342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian clock-controlled gene expression in co-cultured, mat-forming cyanobacteria.
    Hörnlein C; Confurius-Guns V; Grego M; Stal LJ; Bolhuis H
    Sci Rep; 2020 Aug; 10(1):14095. PubMed ID: 32839512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Kai-Protein Clock-Keeping Track of Cyanobacteria's Daily Life.
    Snijder J; Axmann IM
    Subcell Biochem; 2019; 93():359-391. PubMed ID: 31939158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase-dependent generation and transmission of time information by the KaiABC circadian clock oscillator through SasA-KaiC interaction in cyanobacteria.
    Valencia S J; Bitou K; Ishii K; Murakami R; Morishita M; Onai K; Furukawa Y; Imada K; Namba K; Ishiura M
    Genes Cells; 2012 May; 17(5):398-419. PubMed ID: 22512339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. KidA, a multi-PAS domain protein, tunes the period of the cyanobacterial circadian oscillator.
    Kim SJ; Chi C; Pattanayak G; Dinner AR; Rust MJ
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2202426119. PubMed ID: 36067319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of the monomer-dimer-tetramer interconversion of the clock protein KaiB in the generation of circadian oscillations in cyanobacteria.
    Iida T; Mutoh R; Onai K; Morishita M; Furukawa Y; Namba K; Ishiura M
    Genes Cells; 2015 Mar; 20(3):173-90. PubMed ID: 25492525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhythms in energy storage control the ability of the cyanobacterial circadian clock to reset.
    Pattanayak GK; Phong C; Rust MJ
    Curr Biol; 2014 Aug; 24(16):1934-8. PubMed ID: 25127221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synchronization of the circadian clock to the environment tracked in real time.
    Fang M; Chavan AG; LiWang A; Golden SS
    Proc Natl Acad Sci U S A; 2023 Mar; 120(13):e2221453120. PubMed ID: 36940340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protocols for in vitro reconstitution of the cyanobacterial circadian clock.
    Chavan A; Heisler J; Chang YG; Golden SS; Partch CL; LiWang A
    Biopolymers; 2024 Mar; 115(2):e23559. PubMed ID: 37421636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.
    Diamond S; Jun D; Rubin BE; Golden SS
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):E1916-25. PubMed ID: 25825710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide fitness assessment during diurnal growth reveals an expanded role of the cyanobacterial circadian clock protein KaiA.
    Welkie DG; Rubin BE; Chang YG; Diamond S; Rifkin SA; LiWang A; Golden SS
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E7174-E7183. PubMed ID: 29991601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.