BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29440400)

  • 21. [The recent advances in developing gene editing and expression tools and the synthesis of natural products in
    Zhang J; Cui Z; Qi Q; Hou J
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):478-505. PubMed ID: 35234377
    [No Abstract]   [Full Text] [Related]  

  • 22. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism.
    Huang YY; Jian XX; Lv YB; Nian KQ; Gao Q; Chen J; Wei LJ; Hua Q
    J Biotechnol; 2018 Sep; 281():106-114. PubMed ID: 29986837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKS-Derived Polyketides.
    Palmer CM; Alper HS
    Biotechnol J; 2019 Jan; 14(1):e1700463. PubMed ID: 30358143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform.
    Ma J; Gu Y; Marsafari M; Xu P
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):845-862. PubMed ID: 32623653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Refactoring the architecture of a polyketide gene cluster enhances docosahexaenoic acid production in Yarrowia lipolytica through improved expression and genetic stability.
    Dietrich D; Jovanovic-Gasovic S; Cao P; Kohlstedt M; Wittmann C
    Microb Cell Fact; 2023 Sep; 22(1):199. PubMed ID: 37773137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yarrowia lipolytica: more than an oleaginous workhorse.
    Miller KK; Alper HS
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9251-9262. PubMed ID: 31686142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter.
    Tang SY; Qian S; Akinterinwa O; Frei CS; Gredell JA; Cirino PC
    J Am Chem Soc; 2013 Jul; 135(27):10099-103. PubMed ID: 23786422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica.
    Li C; Yang X; Gao S; Wang H; Lin CSK
    Bioresour Technol; 2017 Feb; 225():9-16. PubMed ID: 27875768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A coupled in vitro/in vivo approach for engineering a heterologous type III PKS to enhance polyketide biosynthesis in Saccharomyces cerevisiae.
    Vickery CR; Cardenas J; Bowman ME; Burkart MD; Da Silva NA; Noel JP
    Biotechnol Bioeng; 2018 Jun; 115(6):1394-1402. PubMed ID: 29457628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of α-linolenic acid in Yarrowia lipolytica using low-temperature fermentation.
    Cordova LT; Alper HS
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8809-8816. PubMed ID: 30196328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica.
    Braga A; Belo I
    World J Microbiol Biotechnol; 2016 Oct; 32(10):169. PubMed ID: 27565779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering
    Shang Y; Wei W; Zhang P; Ye BC
    J Agric Food Chem; 2020 Feb; 68(5):1364-1372. PubMed ID: 31903751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Valorizing a hydrothermal liquefaction aqueous phase through co-production of chemicals and lipids using the oleaginous yeast Yarrowia lipolytica.
    Cordova LT; Lad BC; Ali SA; Schmidt AJ; Billing JM; Pomraning K; Hofstad B; Swita MS; Collett JR; Alper HS
    Bioresour Technol; 2020 Oct; 313():123639. PubMed ID: 32534224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced Strategies for the Synthesis of Terpenoids in
    Li ZJ; Wang YZ; Wang LR; Shi TQ; Sun XM; Huang H
    J Agric Food Chem; 2021 Mar; 69(8):2367-2381. PubMed ID: 33595318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein.
    Haddouche R; Poirier Y; Delessert S; Sabirova J; Pagot Y; Neuvéglise C; Nicaud JM
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1327-40. PubMed ID: 21603933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production.
    Katre G; Ajmera N; Zinjarde S; RaviKumar A
    Microb Cell Fact; 2017 Oct; 16(1):176. PubMed ID: 29065878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica.
    Blazeck J; Liu L; Knight R; Alper HS
    J Biotechnol; 2013 Jun; 165(3-4):184-94. PubMed ID: 23602802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Escherichia coli to increase triacetic acid lactone (TAL) production using an optimized TAL sensor-reporter system.
    Li Y; Qian S; Dunn R; Cirino PC
    J Ind Microbiol Biotechnol; 2018 Sep; 45(9):789-793. PubMed ID: 30046952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of plant natural products through engineered Yarrowia lipolytica.
    Muhammad A; Feng X; Rasool A; Sun W; Li C
    Biotechnol Adv; 2020 Nov; 43():107555. PubMed ID: 32422161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica.
    Liu H; Marsafari M; Deng L; Xu P
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3167-3179. PubMed ID: 30734122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.