These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 29440410)
1. Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data. Power JD; Plitt M; Gotts SJ; Kundu P; Voon V; Bandettini PA; Martin A Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2105-E2114. PubMed ID: 29440410 [TBL] [Abstract][Full Text] [Related]
2. A Critical, Event-Related Appraisal of Denoising in Resting-State fMRI Studies. Power JD; Lynch CJ; Adeyemo B; Petersen SE Cereb Cortex; 2020 Sep; 30(10):5544-5559. PubMed ID: 32494823 [TBL] [Abstract][Full Text] [Related]
3. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Kundu P; Brenowitz ND; Voon V; Worbe Y; Vértes PE; Inati SJ; Saad ZS; Bandettini PA; Bullmore ET Proc Natl Acad Sci U S A; 2013 Oct; 110(40):16187-92. PubMed ID: 24038744 [TBL] [Abstract][Full Text] [Related]
4. Sources and implications of whole-brain fMRI signals in humans. Power JD; Plitt M; Laumann TO; Martin A Neuroimage; 2017 Feb; 146():609-625. PubMed ID: 27751941 [TBL] [Abstract][Full Text] [Related]
5. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Patel AX; Kundu P; Rubinov M; Jones PS; Vértes PE; Ersche KD; Suckling J; Bullmore ET Neuroimage; 2014 Jul; 95(100):287-304. PubMed ID: 24657353 [TBL] [Abstract][Full Text] [Related]
6. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem. Aquino KM; Fulcher BD; Parkes L; Sabaroedin K; Fornito A Neuroimage; 2020 May; 212():116614. PubMed ID: 32084564 [TBL] [Abstract][Full Text] [Related]
7. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data. Lanka P; Deshpande G Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966 [TBL] [Abstract][Full Text] [Related]
9. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001 [TBL] [Abstract][Full Text] [Related]
10. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals. Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629 [No Abstract] [Full Text] [Related]
11. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Yan CG; Cheung B; Kelly C; Colcombe S; Craddock RC; Di Martino A; Li Q; Zuo XN; Castellanos FX; Milham MP Neuroimage; 2013 Aug; 76():183-201. PubMed ID: 23499792 [TBL] [Abstract][Full Text] [Related]
12. Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. Kundu P; Voon V; Balchandani P; Lombardo MV; Poser BA; Bandettini PA Neuroimage; 2017 Jul; 154():59-80. PubMed ID: 28363836 [TBL] [Abstract][Full Text] [Related]
13. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Hallquist MN; Hwang K; Luna B Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457 [TBL] [Abstract][Full Text] [Related]
14. Neural underpinning of a respiration-associated resting-state fMRI network. Tu W; Zhang N Elife; 2022 Oct; 11():. PubMed ID: 36263940 [TBL] [Abstract][Full Text] [Related]
15. Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state FMRI. Spisák T; Jakab A; Kis SA; Opposits G; Aranyi C; Berényi E; Emri M PLoS One; 2014; 9(9):e104947. PubMed ID: 25188284 [TBL] [Abstract][Full Text] [Related]
16. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355 [TBL] [Abstract][Full Text] [Related]
17. Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement. Fellner MC; Volberg G; Mullinger KJ; Goldhacker M; Wimber M; Greenlee MW; Hanslmayr S Neuroimage; 2016 Jun; 133():354-366. PubMed ID: 27012498 [TBL] [Abstract][Full Text] [Related]
18. Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations. Kaplan S; Meyer D; Miranda-Dominguez O; Perrone A; Earl E; Alexopoulos D; Barch DM; Day TKM; Dust J; Eggebrecht AT; Feczko E; Kardan O; Kenley JK; Rogers CE; Wheelock MD; Yacoub E; Rosenberg M; Elison JT; Fair DA; Smyser CD Neuroimage; 2022 Feb; 247():118838. PubMed ID: 34942363 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the Sensitivity of Resting-State BOLD Variability to Age and Cognition after Controlling for Motion and Cardiovascular Influences: A Network-Based Approach. Millar PR; Petersen SE; Ances BM; Gordon BA; Benzinger TLS; Morris JC; Balota DA Cereb Cortex; 2020 Oct; 30(11):5686-5701. PubMed ID: 32515824 [TBL] [Abstract][Full Text] [Related]
20. Does motion-related brain functional connectivity reflect both artifacts and genuine neural activity? Pujol J; Macià D; Blanco-Hinojo L; Martínez-Vilavella G; Sunyer J; de la Torre R; Caixàs A; Martín-Santos R; Deus J; Harrison BJ Neuroimage; 2014 Nov; 101():87-95. PubMed ID: 24999036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]