These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29440489)

  • 1. Cryo-EM reconstruction of AlfA from
    Szewczak-Harris A; Löwe J
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3458-3463. PubMed ID: 29440489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.
    Bharat TA; Murshudov GN; Sachse C; Löwe J
    Nature; 2015 Jul; 523(7558):106-10. PubMed ID: 25915019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM structure of the bacterial actin AlfA reveals unique assembly and ATP-binding interactions and the absence of a conserved subdomain.
    Usluer GD; DiMaio F; Yang SK; Hansen JM; Polka JK; Mullins RD; Kollman JM
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3356-3361. PubMed ID: 29440491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessory factors promote AlfA-dependent plasmid segregation by regulating filament nucleation, disassembly, and bundling.
    Polka JK; Kollman JM; Mullins RD
    Proc Natl Acad Sci U S A; 2014 Feb; 111(6):2176-81. PubMed ID: 24481252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development.
    Becker E; Herrera NC; Gunderson FQ; Derman AI; Dance AL; Sims J; Larsen RA; Pogliano J
    EMBO J; 2006 Dec; 25(24):5919-31. PubMed ID: 17139259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure and assembly dynamics of plasmid actin AlfA imply a novel mechanism of DNA segregation.
    Polka JK; Kollman JM; Agard DA; Mullins RD
    J Bacteriol; 2009 Oct; 191(20):6219-30. PubMed ID: 19666709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and Dynamics of Actin-Like Cytomotive Filaments in Plasmid Segregation.
    Gayathri P; Harne S
    Subcell Biochem; 2017; 84():299-321. PubMed ID: 28500530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the stability determinant AlfB of pBET131, a miniplasmid derivative of bacillus subtilis (natto) plasmid pLS32.
    Tanaka T
    J Bacteriol; 2010 Mar; 192(5):1221-30. PubMed ID: 20023009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric structures and dynamic properties of the bacterial actin AlfA.
    Popp D; Narita A; Ghoshdastider U; Maeda K; Maéda Y; Oda T; Fujisawa T; Onishi H; Ito K; Robinson RC
    J Mol Biol; 2010 Apr; 397(4):1031-41. PubMed ID: 20156449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation.
    Gayathri P; Fujii T; Møller-Jensen J; van den Ent F; Namba K; Löwe J
    Science; 2012 Dec; 338(6112):1334-7. PubMed ID: 23112295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization.
    Löwe J; He S; Scheres SH; Savva CG
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13396-13401. PubMed ID: 27821762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. F-actin-like filaments formed by plasmid segregation protein ParM.
    van den Ent F; Møller-Jensen J; Amos LA; Gerdes K; Löwe J
    EMBO J; 2002 Dec; 21(24):6935-43. PubMed ID: 12486014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filament structure of bacterial tubulin homologue TubZ.
    Aylett CH; Wang Q; Michie KA; Amos LA; Löwe J
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19766-71. PubMed ID: 20974911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the ParM filament at 8.5Å resolution.
    Gayathri P; Fujii T; Namba K; Löwe J
    J Struct Biol; 2013 Oct; 184(1):33-42. PubMed ID: 23462100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superstructure of the centromeric complex of TubZRC plasmid partitioning systems.
    Aylett CH; Löwe J
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16522-7. PubMed ID: 23010931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of bacterial ParM filaments.
    Orlova A; Garner EC; Galkin VE; Heuser J; Mullins RD; Egelman EH
    Nat Struct Mol Biol; 2007 Oct; 14(10):921-6. PubMed ID: 17873883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerization of Bacillus subtilis MreB on a lipid membrane reveals lateral co-polymerization of MreB paralogs and strong effects of cations on filament formation.
    Dersch S; Reimold C; Stoll J; Breddermann H; Heimerl T; Defeu Soufo HJ; Graumann PL
    BMC Mol Cell Biol; 2020 Nov; 21(1):76. PubMed ID: 33148162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prokaryotic DNA segregation by an actin-like filament.
    Møller-Jensen J; Jensen RB; Löwe J; Gerdes K
    EMBO J; 2002 Jun; 21(12):3119-27. PubMed ID: 12065424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial tubulin TubZ-Bt transitions between a two-stranded intermediate and a four-stranded filament upon GTP hydrolysis.
    Montabana EA; Agard DA
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3407-12. PubMed ID: 24550513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation.
    Jiang S; Narita A; Popp D; Ghoshdastider U; Lee LJ; Srinivasan R; Balasubramanian MK; Oda T; Koh F; Larsson M; Robinson RC
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):E1200-5. PubMed ID: 26873105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.