These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 29440496)
1. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Lemos BR; Kaplan AC; Bae JE; Ferrazzoli AE; Kuo J; Anand RP; Waterman DP; Haber JE Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2040-E2047. PubMed ID: 29440496 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants. Shen H; Strunks GD; Klemann BJ; Hooykaas PJ; de Pater S G3 (Bethesda); 2017 Jan; 7(1):193-202. PubMed ID: 27866150 [TBL] [Abstract][Full Text] [Related]
3. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517 [TBL] [Abstract][Full Text] [Related]
4. Reconstitution of Mycobacterium marinum Nonhomologous DNA End Joining Pathway in Zhang WW; Wright DG; Harrison L; Matlashewski G mSphere; 2022 Jun; 7(3):e0015622. PubMed ID: 35695492 [TBL] [Abstract][Full Text] [Related]
5. Ku DNA End-Binding Activity Promotes Repair Fidelity and Influences End-Processing During Nonhomologous End-Joining in Emerson CH; Lopez CR; Ribes-Zamora A; Polleys EJ; Williams CL; Yeo L; Zaneveld JE; Chen R; Bertuch AA Genetics; 2018 May; 209(1):115-128. PubMed ID: 29500182 [TBL] [Abstract][Full Text] [Related]
6. Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease. Wolfs JM; Hamilton TA; Lant JT; Laforet M; Zhang J; Salemi LM; Gloor GB; Schild-Poulter C; Edgell DR Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14988-14993. PubMed ID: 27956611 [TBL] [Abstract][Full Text] [Related]
7. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704 [TBL] [Abstract][Full Text] [Related]
8. Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae. Wu D; Topper LM; Wilson TE Genetics; 2008 Mar; 178(3):1237-49. PubMed ID: 18245831 [TBL] [Abstract][Full Text] [Related]
9. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Zhang WW; Matlashewski G mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas9 Tool Kit for Efficient and Targeted Insertion/Deletion Mutagenesis of the Komagataella phaffii (Pichia pastoris) Genome. Fischer JE; Glieder A Methods Mol Biol; 2022; 2513():121-133. PubMed ID: 35781203 [TBL] [Abstract][Full Text] [Related]
11. The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Aniukwu J; Glickman MS; Shuman S Genes Dev; 2008 Feb; 22(4):512-27. PubMed ID: 18281464 [TBL] [Abstract][Full Text] [Related]
12. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Chen W; McKenna A; Schreiber J; Haeussler M; Yin Y; Agarwal V; Noble WS; Shendure J Nucleic Acids Res; 2019 Sep; 47(15):7989-8003. PubMed ID: 31165867 [TBL] [Abstract][Full Text] [Related]
14. CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape. Wang G; Zhao N; Berkhout B; Das AT Mol Ther; 2016 Mar; 24(3):522-6. PubMed ID: 26796669 [TBL] [Abstract][Full Text] [Related]
15. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion. Shou J; Li J; Liu Y; Wu Q Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371 [TBL] [Abstract][Full Text] [Related]
16. Precision genome editing in the CRISPR era. Salsman J; Dellaire G Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771 [TBL] [Abstract][Full Text] [Related]
17. Role of the yeast DNA repair protein Nej1 in end processing during the repair of DNA double strand breaks by non-homologous end joining. Yang H; Matsumoto Y; Trujillo KM; Lees-Miller SP; Osley MA; Tomkinson AE DNA Repair (Amst); 2015 Jul; 31():1-10. PubMed ID: 25942368 [TBL] [Abstract][Full Text] [Related]
18. Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana. Vu GTH; Cao HX; Fauser F; Reiss B; Puchta H; Schubert I Plant J; 2017 Oct; 92(1):57-67. PubMed ID: 28696528 [TBL] [Abstract][Full Text] [Related]
20. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Moore JK; Haber JE Mol Cell Biol; 1996 May; 16(5):2164-73. PubMed ID: 8628283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]