These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29440719)

  • 21. Interplay of hippocampal volume and hypothalamus-pituitary-adrenal axis function as markers of stress vulnerability in men at ultra-high risk for psychosis.
    Pruessner M; Bechard-Evans L; Pira S; Joober R; Collins DL; Pruessner JC; Malla AK
    Psychol Med; 2017 Feb; 47(3):471-483. PubMed ID: 27774914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Associations of hippocampal metabolism and regional brain grey matter in neuroleptic-naïve ultra-high-risk subjects and first-episode schizophrenia.
    Nenadic I; Maitra R; Basu S; Dietzek M; Schönfeld N; Lorenz C; Gussew A; Amminger GP; McGorry P; Reichenbach JR; Sauer H; Gaser C; Smesny S
    Eur Neuropsychopharmacol; 2015 Oct; 25(10):1661-8. PubMed ID: 26088723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebral Glutamate and Gamma-Aminobutyric Acid Levels in Individuals at Ultra-high Risk for Psychosis and the Association With Clinical Symptoms and Cognition.
    Wenneberg C; Nordentoft M; Rostrup E; Glenthøj LB; Bojesen KB; Fagerlund B; Hjorthøj C; Krakauer K; Kristensen TD; Schwartz C; Edden RAE; Broberg BV; Glenthøj BY
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2020 Jun; 5(6):569-579. PubMed ID: 32008981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased Striatal and Reduced Prefrontal Cerebral Blood Flow in Clinical High Risk for Psychosis.
    Kindler J; Schultze-Lutter F; Hauf M; Dierks T; Federspiel A; Walther S; Schimmelmann BG; Hubl D
    Schizophr Bull; 2018 Jan; 44(1):182-192. PubMed ID: 28575528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased resting perfusion of the hippocampus in high positive schizotypy: A pseudocontinuous arterial spin labeling study.
    Modinos G; Egerton A; McMullen K; McLaughlin A; Kumari V; Barker GJ; Williams SCR; Zelaya F
    Hum Brain Mapp; 2018 Oct; 39(10):4055-4064. PubMed ID: 29885018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered neuronal spontaneous activity correlates with glutamate concentration in medial prefrontal cortex of major depressed females: An fMRI-MRS study.
    Zhang X; Tang Y; Maletic-Savatic M; Sheng J; Zhang X; Zhu Y; Zhang T; Wang J; Tong S; Wang J; Li Y
    J Affect Disord; 2016 Sep; 201():153-61. PubMed ID: 27235818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GABA content within medial prefrontal cortex predicts the variability of fronto-limbic effective connectivity.
    Delli Pizzi S; Chiacchiaretta P; Mantini D; Bubbico G; Edden RA; Onofrj M; Ferretti A; Bonanni L
    Brain Struct Funct; 2017 Sep; 222(7):3217-3229. PubMed ID: 28386778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hippocampal and striatal responses during motor learning are modulated by prefrontal cortex stimulation.
    Gann MA; King BR; Dolfen N; Veldman MP; Chan KL; Puts NAJ; Edden RAE; Davare M; Swinnen SP; Mantini D; Robertson EM; Albouy G
    Neuroimage; 2021 Aug; 237():118158. PubMed ID: 33991699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy.
    Dubin MJ; Mao X; Banerjee S; Goodman Z; Lapidus KA; Kang G; Liston C; Shungu DC
    J Psychiatry Neurosci; 2016 Apr; 41(3):E37-45. PubMed ID: 26900793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of cortical glutamate-glutamine and γ-aminobutyric acid in obsessive-compulsive disorder by proton magnetic resonance spectroscopy.
    Simpson HB; Shungu DC; Bender J; Mao X; Xu X; Slifstein M; Kegeles LS
    Neuropsychopharmacology; 2012 Nov; 37(12):2684-92. PubMed ID: 22850733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical Morphology Differences in Subjects at Increased Vulnerability for Developing a Psychotic Disorder: A Comparison between Subjects with Ultra-High Risk and 22q11.2 Deletion Syndrome.
    Bakker G; Caan MW; Vingerhoets WA; da Silva-Alves F; de Koning M; Boot E; Nieman DH; de Haan L; Bloemen OJ; Booij J; van Amelsvoort TA
    PLoS One; 2016; 11(11):e0159928. PubMed ID: 27828960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxytocin modulates hippocampal perfusion in people at clinical high risk for psychosis.
    Davies C; Paloyelis Y; Rutigliano G; Cappucciati M; De Micheli A; Ramella-Cravaro V; Provenzani U; Antoniades M; Modinos G; Oliver D; Stahl D; Murguia S; Zelaya F; Allen P; Shergill S; Morrison P; Williams S; Taylor D; McGuire P; Fusar-Poli P
    Neuropsychopharmacology; 2019 Jun; 44(7):1300-1309. PubMed ID: 30626906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced binding potential of GABA-A/benzodiazepine receptors in individuals at ultra-high risk for psychosis: an [18F]-fluoroflumazenil positron emission tomography study.
    Kang JI; Park HJ; Kim SJ; Kim KR; Lee SY; Lee E; An SK; Kwon JS; Lee JD
    Schizophr Bull; 2014 May; 40(3):548-57. PubMed ID: 23588475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Erbb4 Deletion From Inhibitory Interneurons Causes Psychosis-Relevant Neuroimaging Phenotypes.
    Kiemes A; Serrano Navacerrada ME; Kim E; Randall K; Simmons C; Rojo Gonzalez L; Petrinovic MM; Lythgoe DJ; Rotaru D; Di Censo D; Hirschler L; Barbier EL; Vernon AC; Stone JM; Davies C; Cash D; Modinos G
    Schizophr Bull; 2023 May; 49(3):569-580. PubMed ID: 36573631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional outcome in people at high risk for psychosis predicted by thalamic glutamate levels and prefronto-striatal activation.
    Allen P; Chaddock CA; Egerton A; Howes OD; Barker G; Bonoldi I; Fusar-Poli P; Murray R; McGuire P
    Schizophr Bull; 2015 Mar; 41(2):429-39. PubMed ID: 25123110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Youth Mental Health Risk and Resilience Study (YouR-Study).
    Uhlhaas PJ; Gajwani R; Gross J; Gumley AI; Lawrie SM; Schwannauer M
    BMC Psychiatry; 2017 Jan; 17(1):43. PubMed ID: 28125984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study.
    Mechelli A; Riecher-Rössler A; Meisenzahl EM; Tognin S; Wood SJ; Borgwardt SJ; Koutsouleris N; Yung AR; Stone JM; Phillips LJ; McGorry PD; Valli I; Velakoulis D; Woolley J; Pantelis C; McGuire P
    Arch Gen Psychiatry; 2011 May; 68(5):489-95. PubMed ID: 21536978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hippocampal Pathology in Clinical High-Risk Patients and the Onset of Schizophrenia.
    Provenzano FA; Guo J; Wall MM; Feng X; Sigmon HC; Brucato G; First MB; Rothman DL; Girgis RR; Lieberman JA; Small SA
    Biol Psychiatry; 2020 Feb; 87(3):234-242. PubMed ID: 31771861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutamatergic and dopaminergic function and the relationship to outcome in people at clinical high risk of psychosis: a multi-modal PET-magnetic resonance brain imaging study.
    Howes OD; Bonoldi I; McCutcheon RA; Azis M; Antoniades M; Bossong M; Modinos G; Perez J; Stone JM; Santangelo B; Veronese M; Grace A; Allen P; McGuire PK
    Neuropsychopharmacology; 2020 Mar; 45(4):641-648. PubMed ID: 31618752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progressive Decline in Hippocampal CA1 Volume in Individuals at Ultra-High-Risk for Psychosis Who Do Not Remit: Findings from the Longitudinal Youth at Risk Study.
    Ho NF; Holt DJ; Cheung M; Iglesias JE; Goh A; Wang M; Lim JK; de Souza J; Poh JS; See YM; Adcock AR; Wood SJ; Chee MW; Lee J; Zhou J
    Neuropsychopharmacology; 2017 May; 42(6):1361-1370. PubMed ID: 28079061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.