These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29440726)

  • 1. A chemoenzymatic process for amide bond formation by an adenylating enzyme-mediated mechanism.
    Hara R; Hirai K; Suzuki S; Kino K
    Sci Rep; 2018 Feb; 8(1):2950. PubMed ID: 29440726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases.
    Hara R; Suzuki R; Kino K
    Anal Biochem; 2015 May; 477():89-91. PubMed ID: 25615416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of d-Amino Acid-Containing Dipeptides Using the Adenylation Domains of Nonribosomal Peptide Synthetase.
    Kano S; Suzuki S; Hara R; Kino K
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31003981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenylation domains of nonribosomal peptide synthetase: A potential biocatalyst for synthesis of dipeptides and their derivatives.
    Wu Z; Li Y; Fang Y; Zhang J; Yang T; Zhu H; Tao G; Ding Z; Zhang L; Shi G
    Enzyme Microb Technol; 2022 Oct; 160():110089. PubMed ID: 35777194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Diversification Based on Substrate Promiscuity of a Standalone Adenylation Domain in a Reconstituted NRPS System.
    Zhu M; Wang L; He J
    ACS Chem Biol; 2019 Feb; 14(2):256-265. PubMed ID: 30673204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Strategies for the Biosynthesis of N-Acyl Amino Acid Amides.
    Kua GKB; Nguyen GKT; Li Z
    Chembiochem; 2024 Feb; 25(4):e202300672. PubMed ID: 38051126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides.
    Petchey M; Cuetos A; Rowlinson B; Dannevald S; Frese A; Sutton PW; Lovelock S; Lloyd RC; Fairlamb IJS; Grogan G
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11584-11588. PubMed ID: 30035356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipeptide synthesis by internal adenylation domains of a multidomain enzyme involved in nonribosomal peptide synthesis.
    Abe T; Kobayashi K; Kawamura S; Sakaguchi T; Shiiba K; Kobayashi M
    J Gen Appl Microbiol; 2019 Mar; 65(1):1-10. PubMed ID: 29899192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing and engineering amide bond forming ligases for the synthesis of amides.
    Winn M; Richardson SM; Campopiano DJ; Micklefield J
    Curr Opin Chem Biol; 2020 Apr; 55():77-85. PubMed ID: 32058241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases.
    Dieckmann R; Lee YO; van Liempt H; von Döhren H; Kleinkauf H
    FEBS Lett; 1995 Jan; 357(2):212-6. PubMed ID: 7805893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient rational modification of non-ribosomal peptides by adenylation domain substitution.
    Calcott MJ; Owen JG; Ackerley DF
    Nat Commun; 2020 Sep; 11(1):4554. PubMed ID: 32917865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay.
    Duckworth BP; Wilson DJ; Aldrich CC
    Methods Mol Biol; 2016; 1401():53-61. PubMed ID: 26831700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stoichiometry and specificity of in vitro phosphopantetheinylation and aminoacylation of the valine-activating module of surfactin synthetase.
    Weinreb PH; Quadri LE; Walsh CT; Zuber P
    Biochemistry; 1998 Feb; 37(6):1575-84. PubMed ID: 9484228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases.
    Stachelhaus T; Mootz HD; Marahiel MA
    Chem Biol; 1999 Aug; 6(8):493-505. PubMed ID: 10421756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric Detection of the Adenylation Activity in Nonribosomal Peptide Synthetases.
    Maruyama C; Niikura H; Takakuwa M; Katano H; Hamano Y
    Methods Mol Biol; 2016; 1401():77-84. PubMed ID: 26831702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase.
    Trauger JW; Kohli RM; Walsh CT
    Biochemistry; 2001 Jun; 40(24):7092-8. PubMed ID: 11401554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the substrate for nonribosomal peptide synthetase (NRPS) adenylation domains by virtual screening.
    Lee TV; Johnson RD; Arcus VL; Lott JS
    Proteins; 2015 Nov; 83(11):2052-66. PubMed ID: 26358936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate recognition and selection by the initiation module PheATE of gramicidin S synthetase.
    Luo L; Burkart MD; Stachelhaus T; Walsh CT
    J Am Chem Soc; 2001 Nov; 123(45):11208-18. PubMed ID: 11697963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity of the amino acyl adenylate activation sites of gramicidin S-synthetase (GSS).
    Vater J; Kleinkauf H
    Acta Microbiol Acad Sci Hung; 1975; 22(4):419-25. PubMed ID: 58543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Basis of Amide-Forming Adenylation Enzyme VinM in Vicenistatin Biosynthesis.
    Miyanaga A; Nagata K; Nakajima J; Chisuga T; Kudo F; Eguchi T
    ACS Chem Biol; 2023 Nov; 18(11):2343-2348. PubMed ID: 37870408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.