These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29440943)

  • 1. State of the art of robotic surgery related to vision: brain and eye applications of newly available devices.
    Nuzzi R; Brusasco L
    Eye Brain; 2018; 10():13-24. PubMed ID: 29440943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotics in Vitreo-Retinal Surgery.
    Ramamurthy SR; Dave VP
    Semin Ophthalmol; 2022; 37(7-8):795-800. PubMed ID: 35576476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic Microsurgery in Plastic and Reconstructive Surgery: A Literature Review.
    Ghandourah HSH; Schols RM; Wolfs JAGN; Altaweel F; van Mulken TJM
    Surg Innov; 2023 Oct; 30(5):607-614. PubMed ID: 37490999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research progress of ophthalmic surgery robots].
    Wang Y; Zhou HF
    Zhonghua Yan Ke Za Zhi; 2022 Sep; 58(9):727-730. PubMed ID: 36069099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-Assisted Eye Surgery: A Systematic Review of Effectiveness, Safety, and Practicality in Clinical Settings.
    Thirunavukarasu AJ; Hu ML; Foster WP; Xue K; Cehajic-Kapetanovic J; MacLaren RE
    Transl Vis Sci Technol; 2024 Jun; 13(6):20. PubMed ID: 38916880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Robotics in plastic surgery].
    Grünherz L; Gousopoulos E; Barbon C; Uyulmaz S; Giovanoli P; Lindenblatt N
    Chirurgie (Heidelb); 2023 Apr; 94(4):325-329. PubMed ID: 36625922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotics for neuroendovascular intervention: Background and primer.
    Narsinh KH; Paez R; Mueller K; Caton MT; Baker A; Higashida RT; Halbach VV; Dowd CF; Amans MR; Hetts SW; Norbash AM; Cooke DL
    Neuroradiol J; 2022 Feb; 35(1):25-35. PubMed ID: 34398721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery.
    Tan YPA; Liverneaux P; Wong JKF
    Front Surg; 2018; 5():22. PubMed ID: 29740585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in robotic surgery: innovations, challenges and future prospects.
    Chatterjee S; Das S; Ganguly K; Mandal D
    J Robot Surg; 2024 Jan; 18(1):28. PubMed ID: 38231455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Robotic and OCT-Aided Systems for Vitreoretinal Surgery.
    Ahronovich EZ; Simaan N; Joos KM
    Adv Ther; 2021 May; 38(5):2114-2129. PubMed ID: 33813718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence, robotics and eye surgery: are we overfitted?
    Urias MG; Patel N; He C; Ebrahimi A; Kim JW; Iordachita I; Gehlbach PL
    Int J Retina Vitreous; 2019; 5():52. PubMed ID: 31890281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic Integration in the Field of Opthalmology and Its Prospects in India.
    Kumari B; Tidake P
    Cureus; 2022 Oct; 14(10):e30482. PubMed ID: 36415349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft tissue surgical robot for minimally invasive surgery: a review.
    Kim M; Zhang Y; Jin S
    Biomed Eng Lett; 2023 Nov; 13(4):561-569. PubMed ID: 37872994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye-mounting goggles to bridge the gap between benchtop experiments and in vivo robotic eye surgery.
    Posselli NR; Bernstein PS; Abbott JJ
    Sci Rep; 2023 Sep; 13(1):15503. PubMed ID: 37726336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Recognition Based on Sensor Modalities for Robotic Systems: A Survey.
    Manzoor S; Joo SH; Kim EJ; Bae SH; In GG; Pyo JW; Kuc TY
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotics in neurosurgery: Current prevalence and future directions.
    Singh R; Wang K; Qureshi MB; Rangel IC; Brown NJ; Shahrestani S; Gottfried ON; Patel NP; Bydon M
    Surg Neurol Int; 2022; 13():373. PubMed ID: 36128120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsurgery Robots: Applications, Design, and Development.
    Wang T; Li H; Pu T; Yang L
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Coherence Tomography-Guided Robotic Ophthalmic Microsurgery via Reinforcement Learning from Demonstration.
    Keller B; Draelos M; Zhou K; Qian R; Kuo A; Konidaris G; Hauser K; Izatt J
    IEEE Trans Robot; 2020 Aug; 36(4):1207-1218. PubMed ID: 36168513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a collaborative robotic platform based on monocular vision for oral surgery: an in vitro study.
    Huang J; Bao J; Tan Z; Shen S; Yu H
    Int J Comput Assist Radiol Surg; 2024 Jun; ():. PubMed ID: 38822980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives.
    Iordachita II; de Smet MD; Naus G; Mitsuishi M; Riviere CN
    Proc IEEE Inst Electr Electron Eng; 2022 Jul; 110(7):893-908. PubMed ID: 36588782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.