These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29441258)

  • 1. Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire.
    Wagner T; Menges F; Riel H; Gotsmann B; Stemmer A
    Beilstein J Nanotechnol; 2018; 9():129-136. PubMed ID: 29441258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative thermometry of nanoscale hot spots.
    Menges F; Riel H; Stemmer A; Gotsmann B
    Nano Lett; 2012 Feb; 12(2):596-601. PubMed ID: 22214277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy.
    Swoboda T; Wainstein N; Deshmukh S; Köroğlu Ç; Gao X; Lanza M; Hilgenkamp H; Pop E; Yalon E; Muñoz Rojo M
    Nanoscale; 2023 Apr; 15(15):7139-7146. PubMed ID: 37006192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature mapping of operating nanoscale devices by scanning probe thermometry.
    Menges F; Mensch P; Schmid H; Riel H; Stemmer A; Gotsmann B
    Nat Commun; 2016 Mar; 7():10874. PubMed ID: 26936427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy.
    Grajower M; Desiatov B; Goykhman I; Stern L; Mazurski N; Levy U
    Opt Express; 2015 Oct; 23(21):27763-75. PubMed ID: 26480438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts.
    Song TB; Chen Y; Chung CH; Yang YM; Bob B; Duan HS; Li G; Tu KN; Huang Y; Yang Y
    ACS Nano; 2014 Mar; 8(3):2804-11. PubMed ID: 24517263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier density distribution in silicon nanowires investigated by scanning thermal microscopy and Kelvin probe force microscopy.
    Wielgoszewski G; Pałetko P; Tomaszewski D; Zaborowski M; Jóźwiak G; Kopiec D; Gotszalk T; Grabiec P
    Micron; 2015 Dec; 79():93-100. PubMed ID: 26381074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy.
    Bae SS; Prokopuk N; Quitoriano NJ; Adams SM; Ragan R
    Nanotechnology; 2012 Oct; 23(40):405706. PubMed ID: 22995919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Limits of Scanning Thermal Microscopy of Ultrathin Films.
    Metzke C; Frammelsberger W; Weber J; Kühnel F; Zhu K; Lanza M; Benstetter AG
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31978971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.
    Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G
    Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEM-compatible microdevice for the complete thermoelectric characterization of epitaxially integrated Si-based nanowires.
    Sojo-Gordillo JM; Kaur Y; Tachikawa S; Alayo N; Salleras M; Forrer N; Fonseca L; Morata A; Tarancón A; Zardo I
    Nanoscale Horiz; 2024 Jun; 9(7):1200-1210. PubMed ID: 38767571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal mapping of a scanning thermal microscopy tip.
    Jóźwiak G; Wielgoszewski G; Gotszalk T; Kępiński L
    Ultramicroscopy; 2013 Oct; 133():80-7. PubMed ID: 23933596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy.
    Ge Y; Zhang Y; Weaver JMR; Dobson PS
    Nanotechnology; 2017 Dec; 28(48):485706. PubMed ID: 29035274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.
    Gysin U; Glatzel T; Schmölzer T; Schöner A; Reshanov S; Bartolf H; Meyer E
    Beilstein J Nanotechnol; 2015; 6():2485-97. PubMed ID: 26885461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).
    Pereira MJ; Amaral JS; Silva NJ; Amaral VS
    Microsc Microanal; 2016 Dec; 22(6):1270-1280. PubMed ID: 27869043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kelvin probe force microscopy for local characterisation of active nanoelectronic devices.
    Wagner T; Beyer H; Reissner P; Mensch P; Riel H; Gotsmann B; Stemmer A
    Beilstein J Nanotechnol; 2015; 6():2193-206. PubMed ID: 26734511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially resolved thermoelectric effects in
    Gächter N; Könemann F; Sistani M; Bartmann MG; Sousa M; Staudinger P; Lugstein A; Gotsmann B
    Nanoscale; 2020 Oct; 12(40):20590-20597. PubMed ID: 33030483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.