These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29441258)

  • 21. Four-probe measurements of the in-plane thermoelectric properties of nanofilms.
    Mavrokefalos A; Pettes MT; Zhou F; Shi L
    Rev Sci Instrum; 2007 Mar; 78(3):034901. PubMed ID: 17411207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizations of Ohmic and Schottky-behaving contacts of a single ZnO nanowire.
    Bercu B; Geng W; Simonetti O; Kostcheev S; Sartel C; Sallet V; Lérondel G; Molinari M; Giraudet L; Couteau C
    Nanotechnology; 2013 Oct; 24(41):415202. PubMed ID: 24060613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer.
    Swami R; Julié G; Le-Denmat S; Pernot G; Singhal D; Paterson J; Maire J; Motte JF; Paillet N; Guillou H; Gomès S; Bourgeois O
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38814363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying thermal transport in buried semiconductor nanostructures via cross-sectional scanning thermal microscopy.
    Spièce J; Evangeli C; Robson AJ; El Sachat A; Haenel L; Alonso MI; Garriga M; Robinson BJ; Oehme M; Schulze J; Alzina F; Sotomayor Torres C; Kolosov OV
    Nanoscale; 2021 Jun; 13(24):10829-10836. PubMed ID: 34114577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustained Resistive Switching in a Single Cu:7,7,8,8-tetracyanoquinodimethane Nanowire: A Promising Material for Resistive Random Access Memory.
    Basori R; Kumar M; Raychaudhuri AK
    Sci Rep; 2016 Jun; 6():26764. PubMed ID: 27245099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Realizing the Accurate Measurements of Thermal Conductivity over a Wide Range by Scanning Thermal Microscopy Combined with Quantitative Prediction of Thermal Contact Resistance.
    Zhang Q; Zhu W; Zhou J; Deng Y
    Small; 2023 Aug; 19(32):e2300968. PubMed ID: 37066734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards an Accurate Measurement of Thermal Contact Resistance at Chemical Vapor Deposition-Grown Graphene/SiO2 Interface Through Null Point Scanning Thermal Microscopy.
    Chung J; Hwang G; Kim H; Yang W; Kwon O
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9077-82. PubMed ID: 26726646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.
    Metzke C; Kühnel F; Weber J; Benstetter G
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermoelectric Limitations of Graphene Nanodevices at Ultrahigh Current Densities.
    Evangeli C; Swett J; Spiece J; McCann E; Fried J; Harzheim A; Lupini AR; Briggs GAD; Gehring P; Jesse S; Kolosov OV; Mol JA; Dyck O
    ACS Nano; 2024 Apr; 18(17):11153-11164. PubMed ID: 38641345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Joule heating problem in silver nanowire transparent electrodes.
    Khaligh HH; Xu L; Khosropour A; Madeira A; Romano M; Pradére C; Tréguer-Delapierre M; Servant L; Pope MA; Goldthorpe IA
    Nanotechnology; 2017 Oct; 28(42):425703. PubMed ID: 28930100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Asymmetric Local Joule Heating on Silicon Nanowire-Based Devices Formed by Dielectrophoresis Alignment Across Pt Electrodes.
    Ho HH; Lin CL; Tsai WC; Hong LZ; Lyu CH; Hsu HF
    Nanoscale Res Lett; 2018 Jan; 13(1):21. PubMed ID: 29349636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative Characterization of Local Thermal Properties in Thermoelectric Ceramics Using "Jumping-Mode" Scanning Thermal Microscopy.
    Alikin D; Zakharchuk K; Xie W; Romanyuk K; Pereira MJ; Arias-Serrano BI; Weidenkaff A; Kholkin A; Kovalevsky AV; Tselev A
    Small Methods; 2023 Apr; 7(4):e2201516. PubMed ID: 36775977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micromachined Chip Scale Thermal Sensor for Thermal Imaging.
    Shekhawat GS; Ramachandran S; Jiryaei Sharahi H; Sarkar S; Hujsak K; Li Y; Hagglund K; Kim S; Aden G; Chand A; Dravid VP
    ACS Nano; 2018 Feb; 12(2):1760-1767. PubMed ID: 29401382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale Electromechanics To Measure Thermal Conductivity, Expansion, and Interfacial Losses.
    Mathew JP; Patel R; Borah A; Maliakkal CB; Abhilash TS; Deshmukh MM
    Nano Lett; 2015 Nov; 15(11):7621-6. PubMed ID: 26479952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification of probe-sample interactions of a scanning thermal microscope using a nanofabricated calibration sample having programmable size.
    Ge Y; Zhang Y; Booth JA; Weaver JM; Dobson PS
    Nanotechnology; 2016 Aug; 27(32):325503. PubMed ID: 27363896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Operando Surface Characterization of InP Nanowire p-n Junctions.
    McKibbin SR; Colvin J; Troian A; Knutsson JV; Webb JL; Otnes G; Dirscherl K; Sezen H; Amati M; Gregoratti L; Borgström MT; Mikkelsen A; Timm R
    Nano Lett; 2020 Feb; 20(2):887-895. PubMed ID: 31891513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current and potential characterization on InAs nanowires by contact-mode atomic force microscopy and Kelvin probe force microscopy.
    On S; Takeuchi M; Takahashi T
    Ultramicroscopy; 2002 May; 91(1-4):127-32. PubMed ID: 12211460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscale thermal AFM of polymers: transient heat flow effects.
    Duvigneau J; Schönherr H; Vancso GJ
    ACS Nano; 2010 Nov; 4(11):6932-40. PubMed ID: 20979371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.