These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 29441378)
1. Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents. Carniato F; Bisio C; Evangelisti C; Psaro R; Dal Santo V; Costenaro D; Marchese L; Guidotti M Dalton Trans; 2018 Feb; 47(9):2939-2948. PubMed ID: 29441378 [TBL] [Abstract][Full Text] [Related]
2. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents. Carniato F; Bisio C; Psaro R; Marchese L; Guidotti M Angew Chem Int Ed Engl; 2014 Sep; 53(38):10095-8. PubMed ID: 25056451 [TBL] [Abstract][Full Text] [Related]
3. A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants. Dong J; Hu J; Chi Y; Lin Z; Zou B; Yang S; Hill CL; Hu C Angew Chem Int Ed Engl; 2017 Apr; 56(16):4473-4477. PubMed ID: 28322483 [TBL] [Abstract][Full Text] [Related]
5. Bifunctional Europium(III) and Niobium(V)-Containing Saponite Clays for the Simultaneous Optical Detection and Catalytic Oxidative Abatement of Blister Chemical Warfare Agents. Marchesi S; Guidotti M; Marchese L; Evangelisti C; Carniato F; Bisio C Chemistry; 2021 Mar; 27(14):4723-4730. PubMed ID: 33368657 [TBL] [Abstract][Full Text] [Related]
6. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent. Waysbort D; McGarvey DJ; Creasy WR; Morrissey KM; Hendrickson DM; Durst HD J Hazard Mater; 2009 Jan; 161(2-3):1114-21. PubMed ID: 18524476 [TBL] [Abstract][Full Text] [Related]
7. Eco-Friendly Peelable Active Nanocomposite Films Designed for Biological and Chemical Warfare Agents Decontamination. Toader G; Diacon A; Rotariu T; Alexandru M; Rusen E; Ginghină RE; Alexe F; Oncioiu R; Zorila FL; Podaru A; Moldovan AE; Pulpea D; Gavrilă AM; Iordache TV; Șomoghi R Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833298 [TBL] [Abstract][Full Text] [Related]
8. Materials for the Simultaneous Entrapment and Catalytic Aerobic Oxidative Removal of Sulfur Mustard Simulants. Snider VG; Alshehri R; Slaugenhaupt RM; Hill CL ACS Appl Mater Interfaces; 2021 Nov; 13(43):51519-51524. PubMed ID: 34665594 [TBL] [Abstract][Full Text] [Related]
9. Ionic Crosslinked Hydrogel Films for Immediate Decontamination of Chemical Warfare Agents. Toader G; Ginghina RE; Bratu AE; Podaru AI; Pulpea D; Rotariu T; Gavrilă AM; Diacon A Gels; 2024 Jun; 10(7):. PubMed ID: 39057451 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of sputter deposited CuO nanoparticles and their use for decontamination of 2-chloroethyl ethyl sulfide (CEES). Verma M; Gupta VK; Dave V; Chandra R; Prasad GK J Colloid Interface Sci; 2015 Jan; 438():102-109. PubMed ID: 25454431 [TBL] [Abstract][Full Text] [Related]
11. Recoverable amphiphilic polyoxoniobates catalyzing oxidative and hydrolytic decontamination of chemical warfare agent simulants in emulsion. Li X; Dong J; Liu H; Sun X; Chi Y; Hu C J Hazard Mater; 2018 Feb; 344():994-999. PubMed ID: 30216973 [TBL] [Abstract][Full Text] [Related]
12. A Versatile Self-Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants. Dong J; Lv H; Sun X; Wang Y; Ni Y; Zou B; Zhang N; Yin A; Chi Y; Hu C Chemistry; 2018 Dec; 24(72):19208-19215. PubMed ID: 30353931 [TBL] [Abstract][Full Text] [Related]
13. The sources, fate, and toxicity of chemical warfare agent degradation products. Munro NB; Talmage SS; Griffin GD; Waters LC; Watson AP; King JF; Hauschild V Environ Health Perspect; 1999 Dec; 107(12):933-74. PubMed ID: 10585900 [TBL] [Abstract][Full Text] [Related]
14. Rapid Capture and Hydrolysis of a Sulfur Mustard Gas in Silver-Ion-Exchanged Zeolite Y. Son YR; Kim MK; Ryu SG; Kim HS ACS Appl Mater Interfaces; 2018 Nov; 10(47):40651-40660. PubMed ID: 30375849 [TBL] [Abstract][Full Text] [Related]
15. Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal-Organic Framework. Atilgan A; Islamoglu T; Howarth AJ; Hupp JT; Farha OK ACS Appl Mater Interfaces; 2017 Jul; 9(29):24555-24560. PubMed ID: 28653831 [TBL] [Abstract][Full Text] [Related]
16. Decontamination and Remediation of the Sulfur Mustard Simulant CEES with "Off-the-Shelf" Reagents in Solution and Gel States: A Proof-of-Concept Study. Hiscock JR; Bustone GP; Clark ER ChemistryOpen; 2017 Aug; 6(4):497-500. PubMed ID: 28794943 [TBL] [Abstract][Full Text] [Related]
17. Study of Decomposition of Chemical Warfare Agents using Solid Decontamination Substances. Capoun T; Krykorkova J Toxics; 2019 Dec; 7(4):. PubMed ID: 31817905 [TBL] [Abstract][Full Text] [Related]
18. Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase. Alves NJ; Moore M; Johnson BJ; Dean SN; Turner KB; Medintz IL; Walper SA ACS Appl Mater Interfaces; 2018 May; 10(18):15712-15719. PubMed ID: 29672020 [TBL] [Abstract][Full Text] [Related]
19. Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants. Wu T; Qiu F; Xu R; Zhao Q; Guo L; Chen D; Li C; Jiao X ACS Appl Mater Interfaces; 2023 Jan; 15(1):1265-1275. PubMed ID: 36594244 [TBL] [Abstract][Full Text] [Related]
20. Decomposition of the Simulant 2-Chloroethyl Ethyl Sulfide Blister Agent under Ambient Conditions Using Metal-Organic Frameworks. Kim HH; Seo JY; Kim H; Jeong S; Baek KY; Kim J; Min S; Kim SH; Jeong K ACS Appl Mater Interfaces; 2021 Jan; 13(3):3782-3792. PubMed ID: 33461292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]