BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29441378)

  • 1. Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents.
    Carniato F; Bisio C; Evangelisti C; Psaro R; Dal Santo V; Costenaro D; Marchese L; Guidotti M
    Dalton Trans; 2018 Feb; 47(9):2939-2948. PubMed ID: 29441378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.
    Carniato F; Bisio C; Psaro R; Marchese L; Guidotti M
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10095-8. PubMed ID: 25056451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants.
    Dong J; Hu J; Chi Y; Lin Z; Zou B; Yang S; Hill CL; Hu C
    Angew Chem Int Ed Engl; 2017 Apr; 56(16):4473-4477. PubMed ID: 28322483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locus-specific microemulsion catalysts for sulfur mustard (HD) chemical warfare agent decontamination.
    Fallis IA; Griffiths PC; Cosgrove T; Dreiss CA; Govan N; Heenan RK; Holden I; Jenkins RL; Mitchell SJ; Notman S; Platts JA; Riches J; Tatchell T
    J Am Chem Soc; 2009 Jul; 131(28):9746-55. PubMed ID: 19555102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifunctional Europium(III) and Niobium(V)-Containing Saponite Clays for the Simultaneous Optical Detection and Catalytic Oxidative Abatement of Blister Chemical Warfare Agents.
    Marchesi S; Guidotti M; Marchese L; Evangelisti C; Carniato F; Bisio C
    Chemistry; 2021 Mar; 27(14):4723-4730. PubMed ID: 33368657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.
    Waysbort D; McGarvey DJ; Creasy WR; Morrissey KM; Hendrickson DM; Durst HD
    J Hazard Mater; 2009 Jan; 161(2-3):1114-21. PubMed ID: 18524476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eco-Friendly Peelable Active Nanocomposite Films Designed for Biological and Chemical Warfare Agents Decontamination.
    Toader G; Diacon A; Rotariu T; Alexandru M; Rusen E; Ginghină RE; Alexe F; Oncioiu R; Zorila FL; Podaru A; Moldovan AE; Pulpea D; Gavrilă AM; Iordache TV; Șomoghi R
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials for the Simultaneous Entrapment and Catalytic Aerobic Oxidative Removal of Sulfur Mustard Simulants.
    Snider VG; Alshehri R; Slaugenhaupt RM; Hill CL
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51519-51524. PubMed ID: 34665594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of sputter deposited CuO nanoparticles and their use for decontamination of 2-chloroethyl ethyl sulfide (CEES).
    Verma M; Gupta VK; Dave V; Chandra R; Prasad GK
    J Colloid Interface Sci; 2015 Jan; 438():102-109. PubMed ID: 25454431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recoverable amphiphilic polyoxoniobates catalyzing oxidative and hydrolytic decontamination of chemical warfare agent simulants in emulsion.
    Li X; Dong J; Liu H; Sun X; Chi Y; Hu C
    J Hazard Mater; 2018 Feb; 344():994-999. PubMed ID: 30216973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Versatile Self-Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants.
    Dong J; Lv H; Sun X; Wang Y; Ni Y; Zou B; Zhang N; Yin A; Chi Y; Hu C
    Chemistry; 2018 Dec; 24(72):19208-19215. PubMed ID: 30353931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sources, fate, and toxicity of chemical warfare agent degradation products.
    Munro NB; Talmage SS; Griffin GD; Waters LC; Watson AP; King JF; Hauschild V
    Environ Health Perspect; 1999 Dec; 107(12):933-74. PubMed ID: 10585900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Capture and Hydrolysis of a Sulfur Mustard Gas in Silver-Ion-Exchanged Zeolite Y.
    Son YR; Kim MK; Ryu SG; Kim HS
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40651-40660. PubMed ID: 30375849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal-Organic Framework.
    Atilgan A; Islamoglu T; Howarth AJ; Hupp JT; Farha OK
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24555-24560. PubMed ID: 28653831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decontamination and Remediation of the Sulfur Mustard Simulant CEES with "Off-the-Shelf" Reagents in Solution and Gel States: A Proof-of-Concept Study.
    Hiscock JR; Bustone GP; Clark ER
    ChemistryOpen; 2017 Aug; 6(4):497-500. PubMed ID: 28794943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Decomposition of Chemical Warfare Agents using Solid Decontamination Substances.
    Capoun T; Krykorkova J
    Toxics; 2019 Dec; 7(4):. PubMed ID: 31817905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase.
    Alves NJ; Moore M; Johnson BJ; Dean SN; Turner KB; Medintz IL; Walper SA
    ACS Appl Mater Interfaces; 2018 May; 10(18):15712-15719. PubMed ID: 29672020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants.
    Wu T; Qiu F; Xu R; Zhao Q; Guo L; Chen D; Li C; Jiao X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1265-1275. PubMed ID: 36594244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition of the Simulant 2-Chloroethyl Ethyl Sulfide Blister Agent under Ambient Conditions Using Metal-Organic Frameworks.
    Kim HH; Seo JY; Kim H; Jeong S; Baek KY; Kim J; Min S; Kim SH; Jeong K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3782-3792. PubMed ID: 33461292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of TiO
    Šťastný M; Štengl V; Henych J; Tolasz J; Kormunda M; Ederer J; Issa G; Janoš P
    RSC Adv; 2020 May; 10(33):19542-19552. PubMed ID: 35515455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.