These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Brennan K; Martin K; FitzGerald SP; O'Sullivan J; Wu Y; Blanco A; Richardson C; Mc Gee MM Sci Rep; 2020 Jan; 10(1):1039. PubMed ID: 31974468 [TBL] [Abstract][Full Text] [Related]
4. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. Stranska R; Gysbrechts L; Wouters J; Vermeersch P; Bloch K; Dierickx D; Andrei G; Snoeck R J Transl Med; 2018 Jan; 16(1):1. PubMed ID: 29316942 [TBL] [Abstract][Full Text] [Related]
5. Combination of size-exclusion chromatography and ion exchange adsorption for improving the proteomic analysis of plasma-derived extracellular vesicles. Wang Y; Zhang Y; Li Z; Wei S; Chi X; Yan X; Lv H; Zhao L; Zhao L Proteomics; 2023 May; 23(9):e2200364. PubMed ID: 36624553 [TBL] [Abstract][Full Text] [Related]
6. Proteomic Toolbox To Standardize the Separation of Extracellular Vesicles and Lipoprotein Particles. Wang T; Turko IV J Proteome Res; 2018 Sep; 17(9):3104-3113. PubMed ID: 30080417 [TBL] [Abstract][Full Text] [Related]
7. Rapid Isolation of Extracellular Vesicles from Blood Plasma with Size-Exclusion Chromatography Followed by Mass Spectrometry-Based Proteomic Profiling. Kreimer S; Ivanov AR Methods Mol Biol; 2017; 1660():295-302. PubMed ID: 28828666 [TBL] [Abstract][Full Text] [Related]
8. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication. Tong M; Kleffmann T; Pradhan S; Johansson CL; DeSousa J; Stone PR; James JL; Chen Q; Chamley LW Hum Reprod; 2016 Apr; 31(4):687-99. PubMed ID: 26839151 [TBL] [Abstract][Full Text] [Related]
9. Isolation of Circulating Extracellular Vesicles by High-Performance Size-Exclusion Chromatography. Takov K; Teng IJ; Mayr M Methods Mol Biol; 2022; 2504():31-40. PubMed ID: 35467277 [TBL] [Abstract][Full Text] [Related]
10. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. Martínez-Greene JA; Hernández-Ortega K; Quiroz-Baez R; Resendis-Antonio O; Pichardo-Casas I; Sinclair DA; Budnik B; Hidalgo-Miranda A; Uribe-Querol E; Ramos-Godínez MDP; Martínez-Martínez E J Extracell Vesicles; 2021 Apr; 10(6):e12087. PubMed ID: 33936570 [TBL] [Abstract][Full Text] [Related]
11. Immune capture and protein profiling of small extracellular vesicles from human plasma. Skoczylas Ł; Gawin M; Fochtman D; Widłak P; Whiteside TL; Pietrowska M Proteomics; 2024 Jun; 24(11):e2300180. PubMed ID: 37713108 [TBL] [Abstract][Full Text] [Related]
12. Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers. Pearson LJ; Klaharn IY; Thongsawang B; Manuprasert W; Saejew T; Somparn P; Chuengsaman P; Kanjanabuch T; Pisitkun T PLoS One; 2017; 12(6):e0178601. PubMed ID: 28594924 [TBL] [Abstract][Full Text] [Related]
13. A novel method of high-purity extracellular vesicle enrichment from microliter-scale human serum for proteomic analysis. Ji X; Huang S; Zhang J; Bruce TF; Tan Z; Wang D; Zhu J; Marcus RK; Lubman DM Electrophoresis; 2021 Feb; 42(3):245-256. PubMed ID: 33169421 [TBL] [Abstract][Full Text] [Related]
14. Improving the Purity of Extracellular Vesicles by Removal of Lipoproteins from Size Exclusion Chromatography- and Ultracentrifugation-Processed Samples Using Glycosaminoglycan-Functionalized Magnetic Beads. Chou CY; Chiang PC; Li CC; Chang JW; Lu PH; Hsu WF; Chang LC; Hsu JL; Wu MS; Wo AM ACS Appl Mater Interfaces; 2024 Aug; 16(34):44386-44398. PubMed ID: 39149774 [TBL] [Abstract][Full Text] [Related]
16. Improved isolation of extracellular vesicles by removal of both free proteins and lipoproteins. Ter-Ovanesyan D; Gilboa T; Budnik B; Nikitina A; Whiteman S; Lazarovits R; Trieu W; Kalish D; Church GM; Walt DR Elife; 2023 May; 12():. PubMed ID: 37252755 [TBL] [Abstract][Full Text] [Related]
17. Isolation of High-Purity Extracellular Vesicles by the Combination of Iodixanol Density Gradient Ultracentrifugation and Bind-Elute Chromatography From Blood Plasma. Onódi Z; Pelyhe C; Terézia Nagy C; Brenner GB; Almási L; Kittel Á; Manček-Keber M; Ferdinandy P; Buzás EI; Giricz Z Front Physiol; 2018; 9():1479. PubMed ID: 30405435 [No Abstract] [Full Text] [Related]
18. An Isolation System to Collect High Quality and Purity Extracellular Vesicles from Serum. Yang J; Gao X; Xing X; Huang H; Tang Q; Ma S; Xu X; Liang C; Li M; Liao L; Tian W Int J Nanomedicine; 2021; 16():6681-6692. PubMed ID: 34616151 [TBL] [Abstract][Full Text] [Related]
19. Comparison of serum and plasma as a source of blood extracellular vesicles: Increased levels of platelet-derived particles in serum extracellular vesicle fractions alter content profiles from plasma extracellular vesicle fractions. Zhang X; Takeuchi T; Takeda A; Mochizuki H; Nagai Y PLoS One; 2022; 17(6):e0270634. PubMed ID: 35749554 [TBL] [Abstract][Full Text] [Related]
20. Mass-Spectrometry Based Proteome Comparison of Extracellular Vesicle Isolation Methods: Comparison of ME-kit, Size-Exclusion Chromatography, and High-Speed Centrifugation. Askeland A; Borup A; Østergaard O; Olsen JV; Lund SM; Christiansen G; Kristensen SR; Heegaard NHH; Pedersen S Biomedicines; 2020 Jul; 8(8):. PubMed ID: 32722497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]