These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29441565)

  • 1. Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer.
    Shao Y; Ye G; Ren S; Piao HL; Zhao X; Lu X; Wang F; Ma W; Li J; Yin P; Xia T; Xu C; Yu JJ; Sun Y; Xu G
    Int J Cancer; 2018 Jul; 143(2):396-407. PubMed ID: 29441565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of tissue metabolomics, transcriptomics and immunohistochemistry reveals ERG- and gleason score-specific metabolomic alterations in prostate cancer.
    Meller S; Meyer HA; Bethan B; Dietrich D; Maldonado SG; Lein M; Montani M; Reszka R; Schatz P; Peter E; Stephan C; Jung K; Kamlage B; Kristiansen G
    Oncotarget; 2016 Jan; 7(2):1421-38. PubMed ID: 26623558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma metabolomic profile in prostatic intraepithelial neoplasia and prostate cancer and associations with the prostate-specific antigen and the Gleason score.
    Markin PA; Brito A; Moskaleva N; Lartsova EV; Shpot YV; Lerner YV; Mikhajlov VY; Potoldykova NV; Enikeev DV; La Frano MR; Appolonova SA
    Metabolomics; 2020 Jun; 16(7):74. PubMed ID: 32556743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring targets of TET2-mediated methylation reprogramming as potential discriminators of prostate cancer progression.
    Kamdar S; Isserlin R; Van der Kwast T; Zlotta AR; Bader GD; Fleshner NE; Bapat B
    Clin Epigenetics; 2019 Mar; 11(1):54. PubMed ID: 30917865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer.
    Ren S; Shao Y; Zhao X; Hong CS; Wang F; Lu X; Li J; Ye G; Yan M; Zhuang Z; Xu C; Xu G; Sun Y
    Mol Cell Proteomics; 2016 Jan; 15(1):154-63. PubMed ID: 26545398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of simultaneous quantitative analysis of tricarboxylic acid cycle metabolites to identify specific metabolites in cancer cells by targeted metabolomic approach.
    Yamamoto T; Sato K; Yamaguchi M; Mitamura K; Taga A
    Biochem Biophys Res Commun; 2021 Dec; 584():53-59. PubMed ID: 34768082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GC/TOFMS analysis of metabolites in serum and urine reveals metabolic perturbation of TCA cycle in db/db mice involved in diabetic nephropathy.
    Li M; Wang X; Aa J; Qin W; Zha W; Ge Y; Liu L; Zheng T; Cao B; Shi J; Zhao C; Wang X; Yu X; Wang G; Liu Z
    Am J Physiol Renal Physiol; 2013 Jun; 304(11):F1317-24. PubMed ID: 23467425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomics analysis reveals distinct profiles of nonmuscle-invasive and muscle-invasive bladder cancer.
    Sahu D; Lotan Y; Wittmann B; Neri B; Hansel DE
    Cancer Med; 2017 Sep; 6(9):2106-2120. PubMed ID: 28766915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Metabolites from the Tricarboxylic Acid Cycle for Yeast and Bacteria Samples Using Gas Chromatography Mass Spectrometry.
    Seifar RM; Ten Pierick A; van Dam PTN
    Methods Mol Biol; 2018; 1730():277-282. PubMed ID: 29363081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: A pilot study.
    Struck-Lewicka W; Kordalewska M; Bujak R; Yumba Mpanga A; Markuszewski M; Jacyna J; Matuszewski M; Kaliszan R; Markuszewski MJ
    J Pharm Biomed Anal; 2015; 111():351-61. PubMed ID: 25684700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast.
    Kamei Y; Tamada Y; Nakayama Y; Fukusaki E; Mukai Y
    J Biol Chem; 2014 Nov; 289(46):32081-32093. PubMed ID: 25294875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.
    Hou E; Li X; Liu Z; Zhang F; Tian Z
    Biomed Chromatogr; 2018 Apr; 32(4):. PubMed ID: 29130499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells.
    Shafi AA; Putluri V; Arnold JM; Tsouko E; Maity S; Roberts JM; Coarfa C; Frigo DE; Putluri N; Sreekumar A; Weigel NL
    Oncotarget; 2015 Oct; 6(31):31997-2012. PubMed ID: 26378018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel non-canonical Wnt signature for prostate cancer aggressiveness.
    Sandsmark E; Hansen AF; Selnæs KM; Bertilsson H; Bofin AM; Wright AJ; Viset T; Richardsen E; Drabløs F; Bathen TF; Tessem MB; Rye MB
    Oncotarget; 2017 Feb; 8(6):9572-9586. PubMed ID: 28030815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of transcriptomics and metabolomics reveals anlotinib-induced cytotoxicity in colon cancer cells.
    Jia Z; Zhang Z; Tian Q; Wu H; Xie Y; Li A; Zhang H; Yang Z; Zhang X
    Gene; 2021 Jun; 786():145625. PubMed ID: 33798683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomic signatures of aggressive prostate cancer.
    McDunn JE; Li Z; Adam KP; Neri BP; Wolfert RL; Milburn MV; Lotan Y; Wheeler TM
    Prostate; 2013 Oct; 73(14):1547-60. PubMed ID: 23824564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Identification of speckle type BTB/POZ protein mutation regulated key metabolic pathways by cell based proteomics and metabolomics].
    Yan M; Liu J; Xia T; Xu G; Piao H
    Se Pu; 2019 Aug; 37(8):887-896. PubMed ID: 31642260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GC-MS-based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats.
    Bando K; Kunimatsu T; Sakai J; Kimura J; Funabashi H; Seki T; Bamba T; Fukusaki E
    J Appl Toxicol; 2011 Aug; 31(6):524-35. PubMed ID: 21154879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isocitrate dehydrogenase 1 sustains a hybrid cytoplasmic-mitochondrial tricarboxylic acid cycle that can be targeted for therapeutic purposes in prostate cancer.
    Gonthier K; Weidmann C; Berthiaume L; Jobin C; Lacouture A; Lafront C; Harvey M; Neveu B; Loehr J; Bergeron A; Fradet Y; Lacombe L; Riopel J; Latulippe É; Atallah C; Shum M; Lambert JP; Pouliot F; Pelletier M; Audet-Walsh É
    Mol Oncol; 2023 Oct; 17(10):2109-2125. PubMed ID: 37086156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optimized analytical method for cellular targeted quantification of primary metabolites in tricarboxylic acid cycle and glycolysis using gas chromatography-tandem mass spectrometry and its application in three kinds of hepatic cell lines.
    Xu J; Zhai Y; Feng L; Xie T; Yao W; Shan J; Zhang L
    J Pharm Biomed Anal; 2019 Jul; 171():171-179. PubMed ID: 31005043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.