These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 29441776)
1. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al Yang C; Chen Y; Liu D; Chen C; Wang J; Fan Y; Huang S; Lei W ACS Appl Mater Interfaces; 2018 Mar; 10(9):8317-8323. PubMed ID: 29441776 [TBL] [Abstract][Full Text] [Related]
2. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering. Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658 [TBL] [Abstract][Full Text] [Related]
3. Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering. Cao YQ; Qin K; Zhu L; Qian X; Zhang XJ; Wu D; Li AD Sci Rep; 2017 Jul; 7(1):5161. PubMed ID: 28701788 [TBL] [Abstract][Full Text] [Related]
4. Hierarchically Assembled Plasmonic Metal-Dielectric-Metal Hybrid Nano-Architectures for High-Sensitivity SERS Detection. Pandey P; Seo MK; Shin KH; Lee YW; Sohn JI Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159747 [TBL] [Abstract][Full Text] [Related]
5. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Zhao Y; Yang D; Li X; Liu Y; Hu X; Zhou D; Lu Y Nanoscale; 2017 Jan; 9(3):1087-1096. PubMed ID: 27973628 [TBL] [Abstract][Full Text] [Related]
6. Sensitive Surface-Enhanced Raman Scattering Detection Using On-Demand Postassembled Particle-on-Film Structure. Wang X; Zhu X; Chen Y; Zheng M; Xiang Q; Tang Z; Zhang G; Duan H ACS Appl Mater Interfaces; 2017 Sep; 9(36):31102-31110. PubMed ID: 28832109 [TBL] [Abstract][Full Text] [Related]
7. Nanocracking and metallization doubly defined large-scale 3D plasmonic sub-10 nm-gap arrays as extremely sensitive SERS substrates. Pan R; Yang Y; Wang Y; Li S; Liu Z; Su Y; Quan B; Li Y; Gu C; Li J Nanoscale; 2018 Feb; 10(7):3171-3180. PubMed ID: 29364303 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
9. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Yang X; Zhong H; Zhu Y; Shen J; Li C Dalton Trans; 2013 Oct; 42(39):14324-30. PubMed ID: 23963100 [TBL] [Abstract][Full Text] [Related]
10. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids. Seo S; Chang TW; Liu GL Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092 [TBL] [Abstract][Full Text] [Related]
11. Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering. Li C; Liu A; Zhang C; Wang M; Li Z; Xu S; Jiang S; Yu J; Yang C; Man B Opt Express; 2017 Aug; 25(17):20631-20641. PubMed ID: 29041742 [TBL] [Abstract][Full Text] [Related]
12. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141 [TBL] [Abstract][Full Text] [Related]
13. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering. Chen M; Phang IY; Lee MR; Yang JK; Ling XY Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081 [TBL] [Abstract][Full Text] [Related]
14. Nanocap array of Au:Ag composite for surface-enhanced Raman scattering. Zhang Y; Wang C; Wang J; Chen L; Li J; Liu Y; Zhao X; Wang Y; Yang J Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():461-7. PubMed ID: 26253437 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Monolayer Gold Nanorings Sandwich Film and Its Higher Surface-Enhanced Raman Scattering Intensity. Zhang L; Zhu T; Yang C; Jang HY; Jang HJ; Liu L; Park S Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32183019 [TBL] [Abstract][Full Text] [Related]
16. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering. Zhang W; Liu J; Niu W; Yan H; Lu X; Liu B ACS Appl Mater Interfaces; 2018 May; 10(17):14850-14856. PubMed ID: 29569899 [TBL] [Abstract][Full Text] [Related]
17. Deep Eutectic Solvent-Assisted Synthesis of Au Nanostars Supported on Graphene Oxide as an Efficient Substrate for SERS-Based Molecular Sensing. Krishnan SK; Chipatecua Godoy Y ACS Omega; 2020 Jan; 5(3):1384-1393. PubMed ID: 32010809 [TBL] [Abstract][Full Text] [Related]
18. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications. Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245 [TBL] [Abstract][Full Text] [Related]
19. 3D hotspot matrix of Au nanoparticles on Au island film with a spacer layer of dithiol molecules for highly sensitive surface-enhanced Raman spectroscopy. Lee DJ; Kim DY Sci Rep; 2021 Nov; 11(1):22399. PubMed ID: 34789757 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film. Gao M; Lin X; Li Z; Wang X; Qiao Y; Zhao H; Zhang J; Wang L Nanotechnology; 2019 Aug; 30(34):345604. PubMed ID: 31067524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]