These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
57 related articles for article (PubMed ID: 29442)
1. Demonstration of enzymatic activity converting azathioprine to 6-mercaptopurine. Watanabe A; Hobara N; Nagashima H Acta Med Okayama; 1978 Jul; 32(3):173-9. PubMed ID: 29442 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of hepatic metabolism of azathioprine in vivo. Kaplowitz N; Kuhlenkamp J Gastroenterology; 1978 Jan; 74(1):90-2. PubMed ID: 618434 [TBL] [Abstract][Full Text] [Related]
3. Impaired metabolism of azathioprine in carbon tetrachloride-injured rats. Hobara N; Watanabe A Hepatogastroenterology; 1981 Aug; 28(4):192-4. PubMed ID: 7274981 [TBL] [Abstract][Full Text] [Related]
4. Glutathione transferase activity with a novel substrate mimics the activation of the prodrug azathioprine. Kurtovic S; Grehn L; Karlsson A; Hellman U; Mannervik B Anal Biochem; 2008 Apr; 375(2):339-44. PubMed ID: 18211812 [TBL] [Abstract][Full Text] [Related]
5. Detection and mechanisms of formation of S-(6-purinyl)glutathione and 6-mercaptopurine in rats given 6-chloropurine. Hwang IY; Elfarra AA J Pharmacol Exp Ther; 1993 Jan; 264(1):41-6. PubMed ID: 8423540 [TBL] [Abstract][Full Text] [Related]
6. Interaction of azathioprine and glutathione in the liver of the rat. Kaplowitz N J Pharmacol Exp Ther; 1977 Mar; 200(3):479-86. PubMed ID: 850124 [TBL] [Abstract][Full Text] [Related]
7. Glutathione-dependent metabolism of cis-3-(9H-purin-6-ylthio)acrylic acid to yield the chemotherapeutic drug 6-mercaptopurine: evidence for two distinct mechanisms in rats. Gunnarsdottir S; Elfarra AA J Pharmacol Exp Ther; 1999 Sep; 290(3):950-7. PubMed ID: 10454464 [TBL] [Abstract][Full Text] [Related]
8. Structural determinants of glutathione transferases with azathioprine activity identified by DNA shuffling of alpha class members. Kurtovic S; Modén O; Shokeer A; Mannervik B J Mol Biol; 2008 Feb; 375(5):1365-79. PubMed ID: 18155239 [TBL] [Abstract][Full Text] [Related]
9. Divergent activities of human glutathione transferases in the bioactivation of azathioprine. Eklund BI; Moberg M; Bergquist J; Mannervik B Mol Pharmacol; 2006 Aug; 70(2):747-54. PubMed ID: 16717136 [TBL] [Abstract][Full Text] [Related]
10. Dose-related effects of phenobarbital on hepatic glutathione-S-transferase activity and ligandin levels in the rat. Okuda H; Potter BJ; Blades B; McHugh TA; Jacobs LN; Berk PD Drug Metab Dispos; 1989; 17(6):677-82. PubMed ID: 2575507 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic thiolysis of azathioprine in vitro. Kaplowitz N Biochem Pharmacol; 1976 Nov; 25(21):2421-6. PubMed ID: 11807 [No Abstract] [Full Text] [Related]
12. Activity of glutathione-dependent enzymes in long term diabetes. I. Activity of glutathione S-transferase and glutathione peroxidase in the liver of alloxan induced diabetic rats. Suchocka Z; Kobylińska K; Pachecka J Acta Pol Pharm; 1995; 52(3):207-11. PubMed ID: 8960250 [TBL] [Abstract][Full Text] [Related]
13. Measurement of thiopurine methyl transferase activity guides dose-initiation and prevents toxicity from azathioprine. Sies C; Florkowski C; George P; Gearry R; Barclay M; Harraway J; Pike L; Walmsley T N Z Med J; 2005 Feb; 118(1210):U1324. PubMed ID: 15776100 [TBL] [Abstract][Full Text] [Related]
15. Comparative bioavailability and pharmacokinetic studies of azathioprine and 6-mercaptopurine in the rhesus monkey. Ding TL; Benet LZ Drug Metab Dispos; 1979; 7(6):373-7. PubMed ID: 43222 [TBL] [Abstract][Full Text] [Related]
16. Pharmacokinetics of azathioprine and 6-mercaptopurine: methodological aspects and preliminary results in uremic patients. Odlind B; Grefberg N; Hartvig P; Lindström B; Lönnerholm G Scand J Urol Nephrol Suppl; 1981; 64():213-9. PubMed ID: 6815791 [No Abstract] [Full Text] [Related]
17. The prevention of alloxan-induced diabetes by the immunosuppressive agent azathioprine. Heikkila RE; Cabbat FS Res Commun Chem Pathol Pharmacol; 1981 Jan; 31(1):163-71. PubMed ID: 7196067 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional control of glutathione S-transferase gene expression by the chemoprotective agent 5-(2-pyrazinyl)-4-methyl-1,2-dithiole-3-thione (oltipraz) in rat liver. Davidson NE; Egner PA; Kensler TW Cancer Res; 1990 Apr; 50(8):2251-5. PubMed ID: 2317812 [TBL] [Abstract][Full Text] [Related]
19. Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn. Rao GM; Rao CV; Pushpangadan P; Shirwaikar A J Ethnopharmacol; 2006 Feb; 103(3):484-90. PubMed ID: 16213120 [TBL] [Abstract][Full Text] [Related]
20. Attenuation of disrupted hepatic active oxygen metabolism with the recovery of acute liver injury in rats intoxicated with carbon tetrachloride. Ohta Y; Nishida K; Sasaki E; Kongo M; Ishiguro I Res Commun Mol Pathol Pharmacol; 1997 Feb; 95(2):191-207. PubMed ID: 9090755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]