BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29442172)

  • 1. Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE.
    Zhong A; Fan P; Zhong Y; Zhang D; Li F; Luo J; Xie Y; Hane K
    Nanoscale Res Lett; 2018 Feb; 13(1):51. PubMed ID: 29442172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy.
    Zhong A; Hane K
    Nanoscale Res Lett; 2012 Dec; 7(1):686. PubMed ID: 23270331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns.
    Kishino K; Ishizawa S
    Nanotechnology; 2015 Jun; 26(22):225602. PubMed ID: 25965011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Induced Growth of GaN Nanowall Structure on Si (111) by Laser Molecular Beam Epitaxy.
    Tyagi P; Ramesh C; Kushvaha SS; Gupta G; Senthil Kumar M
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3919-3924. PubMed ID: 31748096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective area growth of In(Ga)N/GaN nanocolumns by molecular beam epitaxy on GaN-buffered Si(111): from ultraviolet to infrared emission.
    Albert S; Bengoechea-Encabo A; Sánchez-García MA; Kong X; Trampert A; Calleja E
    Nanotechnology; 2013 May; 24(17):175303. PubMed ID: 23558410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AlN Nanowall Structures Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Tamura Y; Hane K
    Nanoscale Res Lett; 2015 Dec; 10(1):460. PubMed ID: 26625884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation Density Dependent Photoluminescence Studies on Homo-Epitaxial GaN Nanowall Networks Grown by Laser Assisted Molecular Beam Epitaxy.
    Ramesh C; Pandey J; Tyagi P; Soni A; Senthil Kumar M; Kushvaha SS
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3866-3872. PubMed ID: 31748088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD.
    Wang W; Wang H; Yang W; Zhu Y; Li G
    Sci Rep; 2016 Apr; 6():24448. PubMed ID: 27101930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth Mechanism and Properties of Self-Assembled InN Nanocolumns on Al Covered Si(111) Substrates by PA-MBE.
    Casallas-Moreno YL; Gallardo-Hernández S; Yee-Rendón CM; Ramírez-López M; Guillén-Cervantes A; Arias-Cerón JS; Huerta-Ruelas J; Santoyo-Salazar J; Mendoza-Álvarez JG; López-López M
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31574912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of AlN buffer layer on the growth of self-assembled GaN nanocolumns on graphene.
    Liudi Mulyo A; Rajpalke MK; Vullum PE; Weman H; Kishino K; Fimland BO
    Sci Rep; 2020 Jan; 10(1):853. PubMed ID: 31964934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarity determination by electron energy-loss spectroscopy: application to ultra-small III-nitride semiconductor nanocolumns.
    Kong X; Ristić J; Sanchez-Garcia MA; Calleja E; Trampert A
    Nanotechnology; 2011 Oct; 22(41):415701. PubMed ID: 21914935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of ZnO nanowall structures grown on GaN template using organometallic chemical vapor deposition.
    Wu CC; Wuu DS; Chen TN; Yu TE; Lin PR; Horng RH; Sun S
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3851-6. PubMed ID: 19049140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanium induced polarity inversion in ordered (In,Ga)N/GaN nanocolumns.
    Kong X; Li H; Albert S; Bengoechea-Encabo A; Sanchez-Garcia MA; Calleja E; Draxl C; Trampert A
    Nanotechnology; 2016 Feb; 27(6):065705. PubMed ID: 26759358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission.
    Kouno T; Kishino K; Yamano K; Kikuchi A
    Opt Express; 2009 Oct; 17(22):20440-7. PubMed ID: 19997272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-morphology induced additional surface plasmon resonance enhancement of SERS sensitivity in Ag/GaN nanowall network.
    Sharvani S; Upadhayaya K; Kumari G; Narayana C; Shivaprasad SM
    Nanotechnology; 2015 Nov; 26(46):465701. PubMed ID: 26502004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.
    Hayashi H; Konno Y; Kishino K
    Nanotechnology; 2016 Feb; 27(5):055302. PubMed ID: 26674458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopant-stimulated growth of GaN nanotube-like nanostructures on Si(111) by molecular beam epitaxy.
    Bolshakov AD; Mozharov AM; Sapunov GA; Shtrom IV; Sibirev NV; Fedorov VV; Ubyivovk EV; Tchernycheva M; Cirlin GE; Mukhin IS
    Beilstein J Nanotechnol; 2018; 9():146-154. PubMed ID: 29441260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarity-Induced Selective Area Epitaxy of GaN Nanowires.
    de Souza Schiaber Z; Calabrese G; Kong X; Trampert A; Jenichen B; Dias da Silva JH; Geelhaar L; Brandt O; Fernández-Garrido S
    Nano Lett; 2017 Jan; 17(1):63-70. PubMed ID: 28073259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective area formation of GaN nanowires on GaN substrates by the use of amorphous Al
    Sobanska M; Zytkiewicz ZR; Klosek K; Kruszka R; Golaszewska K; Ekielski M; Gieraltowska S
    Nanotechnology; 2020 May; 31(18):184001. PubMed ID: 31940593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and density control of GaN nanodots on Si (111) by droplet epitaxy using plasma-assisted molecular beam epitaxy.
    Yu IS; Chang CP; Yang CP; Lin CT; Ma YR; Chen CC
    Nanoscale Res Lett; 2014; 9(1):682. PubMed ID: 25593560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.